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Ligand-field analysis of transition-metal complexes 

by R. G. WOOLLEY 
Department of Physical Sciences, Trent Polytechnic, Clifton Lane, 

Nottingham NGll  8NS, U.K. 

The aim of this review is to give an account of recent theoretical work ('Ligand- 
Field Analysis') that has both led to clarification of the basic structure of ligand-field 
theory and has facilitated the acquisition of information about chemical bonding in 
paramagnetic transition-metal complexes that form insulating crystals. The review 
begins with a justification in modern terms for the classical crystal-field approach 
based on a well defined d"-configuration for the metal ion; the central idea is that the 
ground and low-lying electronic states are based on localized electron wavefunctions 
because the interelectron repulsion energy is so important in these systems. The 
ligand-field theory is developed in two stages; first, the group product wavefunction 
method is used to construct a physically important subspace of many-electron 
wavefunctions for a transition-metal complex. The full n-electron hamiltonian is 
then studied in this basis using Lowdin partitioning and the chain formalism of 
Haydock; a full theoretical characterization of the Ligand-Field hamiltonian, which 
refers explicitly to only the d-electrons, is given. The paper describes the 
parametrization of the ligand-field based on the Cellular Ligand Field (CLF) model 
which explicitly introduces the notion of the chemical functional group to ligand- 
field theory. The {eL}-parameters associated with the local interactions of the metal 
ion and its individual ligands ( 1 )  are discussed, and the review includes some general 
remarks about these quantities for the ligand-fields of some typical transition-metal 
complexes. A short introduction to the modern electronic structure theory of 
materials is given as a postlude to the main review. 
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94 R .  G. Woolley 

1. Introduction 
This article is concerned with the application of quantum mechanical theory to the 

description of the spectral and magnetic properties of transition-metal complexes that 
form electrically insulating crystals-the ‘ligand-field problem’. Much progress has 
been made recently with chemical aspects of ligand-field theory and the aim of the 
article is to give an account of theoretical work that has both lead to clarification of the 
basic structure of ligand-field theory and facilitated the acquisition of information 
about chemical bonding in transition-metal complexes. 

Ligand-Field Analysis is a comprehensive approach to the ligand-field problem 
that emphasizes chemical features (Gerloch and Woolley 1984, Gerloch 1984). It has 
three interrelated aspects: 

(1) The use of various experimental techniques to provide an extensive data of 
‘ligand-field’ properties for a transition-metal complex, for example: 
(a) visible/U.V. spectroscopy, preferably using polarized radiation; 
(b) magnetic susceptibility tensor, x, measurements with temperature 

(c) g-value measurements by e.s.r. 
For all three types of measurement, single-crystal studies are highly desirable. 

(2) A quantum mechanical formalism to describe the experiments referred to in (1); 
this involves the development of a suitably parametrized many-electron theory 
together with a chemical bonding interpretation of the resulting parametri- 
zation, based on what we now refer to as the Cellular Ligand Field (CLF) 
model. 

(3) A powerful computational package implementing the quantum mechanical 
model to carry out the analysis of the experimental data base, and so generate 
the ligand-field parameter set [P,] on which the chemical interpretation is 
based. 

I 

dependence; 

Figures (1) and (2) show schematically how the three aspects of Ligand-Field Analysis 
are brought together. In addition to the spectroscopic and magnetic data, we also 
require the molecular geometry, which can be obtained from X-ray crystallography, 
and the d”-configuration, which is obtained from chemical knowledge (Jsrgensen 
1969). The parameter set [P,] is optimized by comparison between calculated and 
experimentally determined observables. Given an adequate data base, Ligand-Field 
Analysis can tackle essentially any transition-metal complex that forms an insulating 
crystal and is a magnetically dilute paramagnet, without recourse to special assump- 
tions or crude simplifications. This allows some confidence in comparisons between 
parameter sets for related materials, a requirement of any chemically interesting theory. 

While the whole procedure is much more sophisticated than the early work with 
crystal-field theory, none of the experimental techniques are particularly demanding of 
time or money, so Ligand-Field Analysis is of wide applicability. A few illustrative 
examples will be presented at the end of the article after the theoretical status of the 
CLF has been examined. Thinking in terms of local interactions of functional groups is 
really the key to the whole enterprise; it allows the facile construction of the ligand-field 
potential matrix V for transition-metal complexes that have little or no global point- 
group symmetry and, at the same time, the resulting parametrization can be given a 
chemical bonding interpretation that seems to make good chemical sense. This article 
concentrates on aspect (2) of Ligand-Field Analysis-the quantum mechanical 
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LF analysis of transition-metal complexes 95 

INPUT DATA 

i )  MOLECULAR GEOMETRY FROM 
DIFFRACTION STUDY 

i i )  SPECIF ICATION OF LOCAL COORDINATE 
SYSTEM FOR LIGANDS 

i i i )  SPEC1F:CATION OF BASIS  
E .G.  d , d s  OR ' P + * F  e tc .  

i v )  EXPERIMENTAL DATA: 

a )  TRANSITION ENERGIES dEeXP FROM 
ELECTRONIC SPECTRUM 

b) g-TENSOR. gexP 

cl CRYSTAL HAGNETfC SUSCEPTIBIL ITY  TENSOR 
+(T)exP OVER RPNGE OF TEMPERATURE 

ALUES E .G.  80 K & T d  300 K 

COMPUTER PROGRAP 

L I GAND- F I ELD 

ANALYSIS 

-El LIGAND-FIELD 

Figure 1. Schematic showing input for Ligand-Field Analysis. A basis set may be specified as 
either a d"-configuration or as a particular set of terms (e.g. of given spin multiplicity) 
arising from a configuration. 

SELECT I Y l T l A L  

PIRNIITER S I T  

Figure 2. Block diagram showing the relationship between the input (experimental data), the 
quantum mechanical model, and the output ('best-fit' parameters) in Ligand-Field 
Analysis. 
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96 R.  G. Woolley 

formalism-and is intended to complement a recent survey of applications (Gerloch 
and Woolley 1984). Throughout the review it may be helpful for the reader to keep in 
mind that the ligand-field parametrization, which by and large is very successful, is 
bases on a Schrodinger equation that has a well known structure (Griffith 1961, 
Ballhausen 1962) and has to be regarded as thejxed end-point of the theoretical 
analysis. This crucial fact determines the whole thrust of the theory described here. 

The plan of the article is as follows: Section 2 introduces the physical properties that 
characterize the ligand-field regime and their interpretation in terms of localized 
electrons. Section 3 is an attempt to present a modern view of the ligand-field theory of 
transition-metal complexes (Stevens 1976, 1985, Woolley 1981, Gerloch et al. 1981), 
points of connection with ab initio quantum chemistry are identified, and the close 
relationship between the methods used here and those used by solid-state physicists in 
their studies of ‘magnetic insulators’ is emphasized. Some of the quantum-mechanical 
analysis has come from recent theoretical physics and does not seem yet to be well 
known in physical/theoretical chemistry; accordingly, the main features of the ‘chai.n 
formalism’ of quantum mechanics are summarized and then applied to the ligand-field 
problem; section 3.4 has been developed in the course of the preparation of this article, 
and hopefully represents further progress in tightening up the theoretical framework. 

Section 4 is devoted to a full discussion of the ligand-field parametrization based on 
the Cellular Ligand-Field (CLF) model which explicitly introduces the notion of the 
chemical functional group to ligand-field theory (Deeth et al. 1986). A chemical bonding 
interpretation of the ligand-field parameters is shown to emerge from the many- 
electron theory described in section 3; this demonstration relies heavily on the chain 
formalism (section 3.4) and eliminates some technical shortcomings of our earlier 
discussion (Woolley 1985). The {;;}-parameters associated with the local interactions 
of the metal ion and its individual ligands ( I )  are discussed (section 4.3), and some 
general remarks about the {Fl}-parameters for the ligand-fields of typical transition- 
metal complexes are presented in section 4.4; much more detailed discussions will be 
found in the recent primary, review, and monograph literatures concerned with 
Ligand-Field Analysis (Deeth and Gerloch 1984 a, b, 1985 a, b, Gerloch and Woolley 
1984, Gerloch 1984). The article ends with an outline of the electronic structure theory 
of solids (section 5) which it is hoped will be useful background material. 

2. The ligand-field regime 
The materials belonging to the ligand-field regime are typically stoichiometric 

transition-metal and lanthanide-metal complexes; in the solid-state physics literature 
such materials are often referred to as ‘magnetic insulators’. They form one of the three 
canonical types of electronic structures identified in section 5. We shall begin by 
reviewing their characteristic physical properties which reflect the large interelectron 
repulsion energies in these systems. 

2.1. Characteristic physical properties of the ligand-jeld regime 
2.1.1 Magnetism 

The metal complexes of interest are paramagnetic; the temperature ( T )  variation of 
their average magnetic susceptibility, x, is typically found to obey Curie’s law over a 
wide range of temperatures above a few degrees kelvin, 
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LF analysis of transition-metul complexes 97 

where, to a first approximation, the magnetic moment peXp is given by the usual atomic 
formula for an ion with total angular momentum quantum number J ,  

g is the electron g-value and po,  k ,  and N ,  are the usual fundamental constants. For 
lanthanide complexes the value of J depends on the occupancy (n) of the f-electron shell: 
J = L + S for n > 7, J = IL - SI for n < 7, where L and S are the usual Russell-Saunders 
quantum numbers for the total electronic orbital and spin angular momentum. In 
transition-metal complexes the crystalline environment quenches the orbital contri- 
bution (effectively L = 0) and J = S is the appropriate value in equation (2). The correct 
predictions of the orbital and spin degeneracy of the ground states of transition-metal 
and lanthanide-metal complexes, classified according to their geometry and the 
electronic configuration of the metal ion and confirmed by magnetic susceptibility 
measurements, were among the first considerable successes of the quantum theory of 
condensed matter (Ballhausen 1979). Ligand-field theory is not applicable to the more 
complex and varied magnetic behaviour found at very low temperatures ( 5  10 K)? 
which signals the occurrence of ‘exchange phenomena’ caused by electronic coupling 
between the metal ion centres (Interrante 1974). 

2.1.2. Spectroscopy 
These materials show characteristic weak absorption bands in the visible and 

ultraviolet regions of the electromagnetic spectrum. A convenient numerical scale for 
comparing intensities is provided by the oscillator strength, f; of a transition k c i  

where a is the electric dipole operator, and the states i, k involved in the transition have 
energies E ,  Ek respectively. For ‘fully allowed’ electric dipole transitions in electronic 
spectroscopy ((Ek- E j )  = hv 2 O( lo4 cm- ‘)),I the oscillator strength is typically w 1; for 
‘forbidden’ transitions, f<< 1. Figure 3 shows a schematic energy level diagram for a 
transition-metal complex in an insulating crystal. The characteristic low-energy weak 
transitions in CU(II) complexes, for example, havefvalues lop4, whereas for Mn(r1) 
complexes f is even smaller, typically E 

In the theoretical spectroscopy of atoms it is convenient to choose a representation 
such that the atomic stationary states are labelled by energy (Ei), angular momentum 
(J,M,) and parity ( P )  quantum numbers, and a typical key may be written as e.g. 
IE,, N ,  J ,  M,, P )  where N refers to any other quantum numbers required to specify 
completely the representation. The electric dipole transition moment then becomes 

(Cotton and Wilkinson 1980). 

t At these very low temperatures ordered magnetic structures responsible for e.g. antifer- 
romagnetism are formed. 

$Throughout this review the symbols ‘s’, ‘2’ are to be interpreted as ‘less than about’, 
‘greater than about’; they are used with quantities (mainly ligand-field parameters) for which 
strict inequalities seem inappropriate. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1
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f = l  

‘d-d‘ 
‘ I  

I 1  transitions I I  

Figure 3. Energy-level diagram for the electronic spectroscopy of a transition metal complex in 
an insulating crystal. 

and its non-zero values satisfy the selection rules (Landau and Lifshitz 1979) for 
angular momentum (the ‘triangle rule’) 

IJ - J’I < 1 < J  + J’ 
:. AJ = 0, f 1, 0-0 forbidden 

and for parity (the ‘Laporte Rule’) 

PP’= - 1 

:. only odd - even transitions allowed. 

In the present context it is an important observation that the parity selection rule valid 
for the gas-phase spectra of atoms and ions is useful for understanding the intensity 
patterns of the spectra of metal complexes in condensed phases. 
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LF analysis of transition-metal complexes 99 

2.1.3. Electrical conductivity 
Although transition-metal ions have only partiallyfilled shells of valence electrons, 

many transition-metal complexes behave as electrical insulators in the solid state. The 
theoretical significance of this experimental observation rests on the following result 
for the conductivity. Let the electron wavefunctions { $,(r)} at energy E be normalized 
to one electron in a volume SZ,  and consider what current may flow when an electkc 
field is applied to the crystal in, say, the x-direction. The static conductivity a(0) is given 
by the Kubo-Greenwood formula (Mott and Davis 1979) 

DE= <$~4f i~ l$~) ,  E=E’ I 
where N(E,) is the density of electron states evaluated at the Fermi energy, fix is the 
x-component of the momentum operator, and the current matrix element squared 
(lDE12) must be averaged over all states at the Fermi surface. Evidently, electrical 
conduction requires two conditions to be met. Firstly there must be a non-zero density 
of states at E,; in a band model this corresponds to an incompletely filled band of one- 
electron levels. Secondly, these electron levels must give a non-zero current matrix 
element. Now, for localized electron states with energy E d3xt&( - ih djdx) $ E  is zero 
because $ E  can be chosen as a real wavefunction and the hermitian operator f i x  is pure 
imaginary; furthermore two overlapping localized eigenfunctions ~ 1 ,  4b2 with the same 
energy cannot occur. Thus a(0) can only be non-zero for extended (delocalized) electron 
wavefunctions in the crystal. In more physical terms, this analysis shows that a 
necessary condition for electrical conduction is the presence of free charge-carriers; 
such are not found in insulating materials which have electronic structures character- 
ized by localized electron states (see section 5).  

2.2. The interelectron repulsion energy and electron localization 
The fact that we are dealing with paramagnetic insulators has important 

implications for the theoretical description of the ligand-field regime; it is as well to be 
clear about these at the outset. The most important conclusion is that what has always 
been the main quantum chemistry approach to electronic structure theory, namely the 
independent-electron (SCF-MO) model, is of little practical use. An example will help 
to make the point: CuSO, * 5H,O is a familiar blue crystalline material formally built 
up from CU(II) ions and sulphate counterions, with water of hydration. The cupric ion, 
CU(II), has a d9 configuration; accordingly a SCF calculation of the one-electron levels 
in hydrated copper sulphate in its equilibrium crystal structure necessarily gives rise to 
a partially filled energy band because of the incomplete valence d-shells of the CU(II) 
ions. The corresponding one-electron eigenfunctions are Bloch functions that extend 
throughout the periodic crystal. This result, in conjunction with the Kubo-Greenwood 
conductivity formula (lo), leads to the prediction that CuSO, * 5H,O should behave 
electrically as a metal because both DE and N(E,) are non-zero in such a calculation. In 
fact copper sulphate crystals are excellent insulators. The band theory results are 
equally poor for the magnetic? and spectroscopic properties. The same argument can 

t The delocalized band electrons of the independent electron model exhibit temperature- 
independent (Pauli) paramagnetism which is much weaker than the Curie paramagnetism of 
atomic species; this is because the Pauli Exclusion Principle suppresses the alignment of the 
electron spins with the magnetic field much more effectively than does the thermal disorder 
(Ashcroft and Mermin 1976). 
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I 00 R. G. Woolley 

be made for any other transition-metal complex and it implies that a SCF description of 
the electronic structure cannot even be qualitatively correct unless the complex 
behaves electrically as a metal. 

The theoretical interpretation of these findings is well known (Mott 1949, 1974). In 
the ground state and thermally accessible excited electronic states, the valence 
d-electrons (i.e. the electrons at or near the Fermi energy) remain localized about 
individual metal ions and cannot move freely from ion to ion throughout the crystal 
without a considerable net increase in energy because to do so costs considerable 
interelectron repulsion energy that is not compensated by the lowering of kinetic 
energy associated with delocalization. Physically, our knowledge of the crystal 
structure and understanding of chemical bonding interactions suggests that the d- 
electrons of individual ions are only weakly coupled to those of neighbouring ims or 
even their diamagnetic environment (the ligands); this is reflected in the SCF band- 
structure by the occurrence of very narrow bands for these electrons. Narrow bands 
always indicate the necessity for going beyond the independent-electron model 
because, for such bands, interelectron repulsion effects are very important (Cox 1985). 

Within a one-electron model, a simple (and useful) description of such a situation can 
be given within a localized orbital picture; even though the one-electron (molecular 
orbital of SCF) part of the (many-electron) hamiltonian is not diagonalized by a basis of 
localized orbitals, placing the d-electrons in such orbitals leads to an energetically more 
favourable distribution in space for them because it reduces the total interelectron 
repulsion energy by keeping electrons out of each other's way; this more than 
compensates for the loss of electron mobility throughout the crystal. In chemical 
valency terms we are close to the Heitler-London valence bond limit, and far from the 
molecular orbital limit. 

The reference to electron correlation here signals that the many-electron ground 
state and low-lying excited states of the crystal cannot be constructed in a simple way? 
out of the independent-electron model orbitals populated in accordance with the Pauli 
Exclusion Principle. The crystal however is the object on which the experiments are 
performed and to which the quantum theory is properly addressed. Since there is no 
question of an ab initio calculation of the many-electron electronic structure of the 
crystal, we must perforce turn to heuristics. 

Stevens (1976,1985) has given the following argument to characterize the low-lying, 
many-electron levels in a crystalline magnetic insulator. The individual metal ions have 
a set of discrete energy levels (terms) which are characteristic of their d" configuration 
and often have a high degree of degeneracy; for example the ground and first excited 
levels of the Co2+ ion (d') comprise the forty levels of 4F+4P. When these ions are 
brought altogether in the diamagnetic environment of the crystal their energy levels 
broaden out into bands. One's first intuition is that the bands will be narrow and 
separated by substantial gaps; the intuition has some validity as we shall see, but strictly 
speaking it is erroneous. The energy levels of any macroscopic system (macroscopic 
matter, electromagnetic field) form a continuum that starts from the ground-state 
energy. Even if the average interaction energies AE of the ion terms are tiny compared 

t The lack of straightforward correspondence between the orbitals of the SCF independent- 
electron model and the many-electron states of molecules has been demonstrated in extensive ab 
initio SCF-Hartree-Fock and configuration interaction (C.I.) calculations on transition-metal 
atoms and their complexes; see recent discussions of species such as Ni, Ni(CO),, Fe(CO),, 
ferrocene (Faegri and Almlof 1984, Liithi et al. 1984, Rohlfing and Martin 1985, Blomberg et al. 
1985, Widmark et al. 1985) as well as earlier calculations of Hillier et al. (1976 a, b) and Hillier and 
Kendrick (1976). 
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LF analysis of transition-metal complexes 101 

with typical term separation energies, the bands formed from individual terms by 
bringing together N ions have widths that scale as NAE so that in the limit of a large 
system, such as a crystal (N+co), the end result is inevitably a continuum of energy 
levels with the states originating from the ground term merging into or even 
overlapping those of the first excited state, and all higher terms of the d” configuration 
up to the series limit. This continuum has a high degree of degeneracy inherited from 
the atomic terms. 

This result may seem a surprise, conflicting as it does with our intuitions about the 
spectroscopy of the crystal (cf. figure 3); the paradox is resolved by noting that how this 
continuous spectrum of many-electron states translates into physical properties 
depends on the transition matrix elements to which it gives rise. This observation 
suggests an interpretation of the gaps between the bands of energy levels in figure 3: the 
figure refers to excitations induced by the electric dipole operator (or some other 
multipolar operator) and an external electromagnetic field, that are recognizable one- 
electron in character. Such excitations must be in accordance with the Pauli Exclusion 
Principle and qualitatively can still be understood in terms of a suitably chosen set of 
one-electron orbitals (not the molecular orbitals); transitions to electronic states with 
energies lying in the gaps in figure 3 involve the reorganization of several or many 
electrons simultaneously, and simply lack intensity in optical spectroscopy. Equally, 
there are no transitions to states near the ground-state taking an electron from a 
localized orbital to an unoccupied delocalized orbital, and the resistivity is therefore 
high. 

The success of the ‘spin-only’ formula in the Curie Law for the magnetic 
susceptibility of transition-metal complexes, equation (2), and the continued relevance 
of the Laporte rule for their absorption spectra, suggests that the localized orbitals for 
the d-electrons should be atomic-like orbitals centred on the metal ions. A description 
in terms of electrons localized on fragments (atoms, bonds, molecules etc.) is valid for 
any insulating material and accounts in a physically immediate way for the absence of 
free charge-carriers. The notion of localized electron states in an insulating material is a 
key insight that has ramifications far beyond the description of the ligand-field regime 
(Mott and Davis 1979, Kaveh and Mott 1985, Elliott 1983; Anderson 1984). 

We noted earlier that the Hartree-Fock SCF-MO model must be supplemented by 
substantial configuration interaction (C.I.) if we are to obtain anything like a 
quantitative description of the electronic energy levels of transition-metal complexes 
(Liithi et al. 1984). For this reason the methods of ab initio quantum chemistry are of 
limited utility, being feasible for only rather special molecular models (for example, 
complexes involving simple ligands). Where the C.I. methods have been used they 
appear to confirm the picture of localized d-electrons assumed by ligand-field models. 
Perhaps the hardest lesson they teach us is that as far as spectra and magnetism are 
concerned, molecular orbital theory for transition-metal complexes must be viewed 
with considerably more circumspection than has often been the case in the inorganic 
chemistry literature. The C.I. calculations of Hillier et al. (1976 a, b, Hillier and 
Kendrick 1976) on tetrahalide species MX, (M =Ti, Co, V; X = Cl), for example, are 
consistent with localized d-electrons, and suggest that ‘evidence’ for d-orbital 
participation in ‘covalency’ is exaggerated by simple m.0. models of these species. From 
the physical point of view, the effect of the C.I. is to bring about destructive 
interference between delocalized orbitals (m.0.s or Bloch orbitals) so as to give the 
result described above in terms of localized orbitals; at the same time, considerable 
alterations can occur in the order of low-lying energy levels when explicit account is 
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102 R. G .  Woolley 

taken of the interelectron repulsion energy (c.f. footnote page 00). The conclusion to be 
drawn from this discussion is that for most materials in the ligand-field regime a 
parameterized or semi-empirical quantum theory is the order of the day. Even so, 
although our main concern cannot be with ab initio computation, the ligand-field 
model must be grounded in reasonable electronic structure theory-what we are doing 
must not be arbitrary-and it must be subject to quantitative tests. 

One major ingredient of theoretical treatments of the ligand-field regime is the 
assumption that the electrons move under the influence of a rigid lattice of ions; this 
assumption is sometimes found to fail, and we then deal with so-called Jahn-Teller 
systems for which we explicitly recognize coupling between electronic and nuclear 
motion and/or spin-lattice relaxation effects, for example ‘spin-crossover’ phase 
transitions (Giitlich 198 1). The considerable complications in a quantum theory of 
solids (or macroscopic matter in general) in which electrons and nuclei are treated on 
an equal footing would take us too far afield, and this review will make the adiabatic 
assumption (Born and Huang 1954) that the nuclei are only weakly coupled to the 
electron states. We also assume that the nuclear orbitals are strongly localized about 
the classical equilibrium structure; that is, just as in the electron case, the spectrum of 
energy levels for the nuclei in the crystal is continuous, but a large excitation energy is 
assumed to be required for any one nucleus to be moved into a delocalized nuclear 
orbital, for then we shall achieve the mechanical property we call solidity (Anderson 
1984). General arguments suggest that vibronic coupling is likely to be more important 
for localized electron states than for delocalized (Bloch or ‘metallic’) states (Anderson 
1972,1974) so perhaps we ought to be more surprised that the rigid-lattice model works 
well in ligand-field theory, rather than it fails on occasion; however, its use may be 
more a conventional step than an essential feature. The incorporation of the nuclei as 
quantum-mechanical entities in the ligand-field formalism-electron-phonon cou- 
pling may be introduced by perturbation theory, for example-has been discussed by 
Stevens (1973). 

2.3. The crystal-jield parametrization-old and new 
Section 2.2 is a justification, in modern terms, for the early crystal-Jield and ligand- 

jield models of Bethe (1929), Pauling (1931,1932) and Van Vleck (1935). The electronic 
structure of a spherical metal ion, with d-electron configuration fixed by the ion’s 
chemical oxidation state, is taken as a reference system; the assumption is that the metal 
ion valence s and p-orbitals are substantially involved in chemical bonding interactions 
with the ligands, leaving the metal ion with a specified d”-configuration that is relatively 
independent of these chemical bonding effects. Thus crystal-field theory is concerned 
only with low-lying electronic states of pure valence d-orbital parentage; it focuses 
attention on how the crystal environment about an individual ion (the ‘crystal-field’) 
perturbs the ion’s originally degenerate set of valence d-orbitals. This perturbation is 
described by the ‘crystal-field’ matrix or ‘ligand-field potential’ matrix-V; for a 
transition-metal ion, V is a 5 x 5 matrix that can be labelled by the metal’s five valence 
d-orbitals. 

Electron-electron repulsion interactions and spin-orbit coupling are also import- 
ant perturbations for the d-electrons and an essential aspect of the ligand-field problem 
is that it involves an atomic C.I. calculation leading to many-electron states for the 
d-electrons of each ion. In the crystal-field limit, i.e. with neglect of interion exchange 
interactions or other couplings, antisymmetrized products of these states approximate 
the low-lying, many-electron states of the crystal with sufficient accuracy to account for 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



LF a.nalysis of transition-metal complexes 103 

the ligand-field experiments-magnetic measurements and absorption spectroscopy. 
One of the questions addressed by this review is how such a model should be related to 
general electronic structure theory. 

Within a rigid-lattice model, the global point-group symmetry of the equilibrium 
crystal structure about each magnetic ion is carried? by the matrix V and this led to 
much of the early work being directed towards metal complexes with structures that 
could be idealized in terms of relatively high point-group symmetries (Oh, T,, D,, and 
so on) because symmetry reduces the number of independent matrix elements in V. The 
majority of metal complexes of interest to chemists have structures with little, if any, 
point-group symmetry, so that, even at this early stage, the differing concerns and 
interests of chemists and physicists, which persist today, had become apparent. It is 
important to recognize however that there has been considerable convergence in the 
theoretical methods used by these communities. 

The recent progress in ligand-field theory which is of interest to chemists is the 
development of a quantum-mechanical formalism that meets three criteria (Gerloch 
1984): 

(i) It is capable of accounting for experimental data obtained from investigations 
of magnetism and spectroscopy. 

The transitions observed in optical spectroscopy involve many-electron states, and a 
quantitative interpretation of the spectroscopy cannot generally be based on one- 
electron orbital energies. We mentioned above that a many-electron theory is essential. 

(ii) It allows a tractable parametrization scheme for the matrix elements involved 
in the theory required for (i). 

The ligand-field potential matrix, V, is normally known only to the extent that it can be 
obtained by parametrization of the experimental data. Similarly, the interelectron 
repulsion energies are described by the Slater-Condon-Shortley parameters A,  B, C (or 
Racah's F,, F,, F4) and these again are to be parametrized. Finally, there are the d- 
electron spin-orbit coupling constant and Steven's orbital reduction factor, [d and k 
respectively, both of which are important quantities in studies of magnetism. This leads 
to a parameter set [P,]  = [V, F,, F,, F4, Id, k l .  

(iii) The formalism promises a chemicd interpretation of the parameter set [P,] 
described under (ii), more or less irrespective of the point-group symmetry of 
the crystal-field. 

Criterion (iii) is important because the ligand-field theory parametrization is very 
different from the parametrized models familiar in molecular and nuclear spectroscopy. 
The hermitian 5 x 5 matrix V contains 15 independent matrix elements, a number that 
may be reduced by the occurrence of symmetries in the physical system which it 
describes. We must confront the fact that the total number of ligand-field parameters 
( 5  20) may be comparable to the number of quantities required to represent the 
experimental data-evidently even a purely utilitarian argument for parametrization 
as a means of data reduction is not possible here. 

The key to achieving criterion (iii) is the recognition that a change in point of view is 
possible. The matrix V must carry the global point-group symmetry of the crystal-field; 

t This conclusion remains valid when the nuclei are allowed to move if electron-phonon 
interactions are allowed for by perturbation theory (Stevens 1973, 1976). 
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104 R. G. Woolley 

by its nature, therefore, V can only give an indirect, averaged view of the indiuidual 
chemical bonds in the complex. For example, there is no clear-cut separation of metal 
ion-ligand CT and 7c-bonding effects. A chemically more interesting theory results when 
these conventional ideas are integrated with a much older chemical tradition in which 
attention is focused on the role offunctional groups, i.e. parts of individual ligands. This 
is the promise of the Cellular Ligand-Field model-CLF for short&-(Deeth et al. 1986). 
Before describing the CLF, which is concerned with the interpretation of V only, it is 
essential to describe the general quantum mechanical formalism that gives rise to the 
parameter set [PJ and this is the concern of section 3. 

3. Ligand-field theory 
3.1. The many-electron theory-general structure 

In Heisenberg’s version (1927) of quantum mechanics there are only matrix 
elements and the rules for manipulating them, and a quantum mechanical system can 
always be described in a Heisenberg representation by specifying the hamiltonian 
matrix H on an infinite-dimensional Hilbert space W. What we are aiming at as a 
quantum mechanical basis for Ligand-Field Analysis is the specification of a 
hamiltonian matrix, H, such that the solution of the eigenvalue equation 

yields eigenvalues and eigenvectors for the ground state and low-lying excited 
electronic states that reproduce the optical spectrum and magnetic properties of a 
transition-metal complex. However, we also want to have a direct connection between 
ab initio electronic structure theory and the ligand-field model, and for this it is more 
convenient to set up the quantum theory in a Schrodinger representation in terms of 
operators acting on a Hilbert space labelled by functions, and derive the corresponding 
matrix elements that give H. 

Two similar general treatments have been given (Stevens 1976, Gerloch et al. 1981). 
A detailed analysis using the second quantization formalism and treating both the 
single-ion (‘crystal-field’) problem and exchange interactions between ions has been 
given by Stevens (1976) for a magnetic insulator; this work shows how the conventional 
‘spin-hamiltonians’ of solid-state physics can be related to the full many-electron 
theory by exploiting a well known correspondence between annihilation/creation 
operators and angular momentum operators. A less complete analysis, restricted to the 
case where the individual molecules of a transition-metal complex are magnetically 
dilute and based on the use of Slater determinants with the group product 
wavefunction idea (Lykos and Parr 1956, McWeeny and Sutcliffe 1976) has been given 
by Gerloch et al. (1981). This presentation is more closely tied to a coordinate 
wavefunction description in accordance with the chemist’s traditional view of local 
interactions in real space. The two approaches seem to be largely equivalent (Stevens 
1985). 

An essential feature of the ligand-field theory is the requirement that the low-lying 
electronic energy levels of the crystal be described in terms of a fixed number of 
electrons associated with distinct fragments in the crystal; as discussed in section 2, this 
is intimately connected with the circumstance that we are dealing with an insulating 
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LF analysis of transition-metal complexes 105 

crystal. On this basis it is possible to obtain these low-lying levels from an effective 
hamiltonian for the crystal written in the form of a cluster expansion (Stevens 1976), 

where A,  B, C ,  . . . are distinct fragments having a definite number of electrons; more 
explicitly, each fragment consists of a paramagnetic (open-shell) metal ion in a 
diamagnetic (closed-shell) environment. If we ignore the coupling terms H A , ,  

H A B C , .  . . in this expansion, the sum we are left with leads directly to the classical 
'crystal-field' or 'ligand-field' theories; the coupling terms in (12) describe exchange 
phenomena. Stevens derived the hamiltonian (12) using the fermion second quantiz- 
ation formalism; this has the great advantage of automatically taking account of the 
requirement that electrons throughout the crystal should be indistinguishable. His 
results for the crystal-field problem seem to be equivalent to those obtained by Gerloch 
et al. (1981) for a single fragment, and since the latter used methods closer to traditional 
quantum chemistry I have chosen to describe it here. 

The basic idea of both approaches is that the ligand-field problem involves a 
hamiltonian matrix constructed by projection of the full many-body hamiltonian onto 
the many-electron states associated with a subset of the electrons of each metal ion. 
Before giving an account of how this may be accomplished with the use of group 
product wavefunctions, it is helpful to review the structure of ligand-field theory. 
Although parametrized ligand-field calculations have been carried out for many years, 
it is only recently that attempts to relate its working equations to rigorous quantum 
mechanics have been carried through to completion. To appreciate the theoretical 
development described below it is vital to understand that these investigations have 
necessarily been directed towards achieving the known working equations of ligand- 
field theory, which can be specified concisely by the following two groups of statements: 

A 

(i ) 

(ii) 

(iii) 

Quite generally, a fragment hamiltonian f i A  in a many-electron basis gives rise 
to the structure 

H =  VI + VS.0. + Vee (13) 
spirhdependent spin-orbit interelectron 

kinetic energy and nuclear coupling repulsion 
attraction interactions \ " i 

" ' sums of two-electron 
sums of one-electron matrix elements 
\ 

matrix elements 

The Ligand-Field hamiltonian is expected to account only for the magnetism 
of the complex and its low-lying set of spectroscopic transitions in the 
visible/U.V. region of the spectrum that have weak intensity; ligand-field 
theory is not concerned with quantitative aspects of the energetics of chemical 
bond formation. Guided by the Laporte rule of atomic spectroscopy, we 
restrict the orbital matrix elements to be diagonal in 1. For each I value there 
are 2(21+ 1) 5 N' spin-orbitals. 
We wish to describe a small range of excitation energies, a few eV at most, 
which in accordance with (ii) involve excitations that are atomic in character. 
Given the typical scale of energy separations of atomic orbitals with different 
values of 1 and the same, or adjacent, principal quantum numbers, we achieve 
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R. G .  Woolley 

this restriction by allowing only one value of 1. For transition-metal 
complexes, 1 = 2. 
The number of electrons, n, associated with atomic orbitals of given 1 at each 
metal ion must be specified; for a transition-metal ion this is given by the d" 
configuration which is related directly to the chemical oxidation state. 

As a result of combining restrictions (iiHiv) with (i), we obtain a matrix defined on a 
subspace of dimension given by the combinatorial number "C,; this matrix is an 
obvious candidate to be considered as the ligand-field hamiltonian HL,F,, but then we 
are lead to the question: how must the ligand-field matrix HL,F,, so defined, be related to 
the infinite-dimensional matrix, H, expected according to rigorous quantum theory 
applied to one of the fragment hamiltonians 8, appearing in equation (12)? The 
completion of the characterization of the ligand-field model is achieved through 
answering this question. 

The first part of the answer is easy; the partitioning technique (Lowdin 1966) can 
always be used to rewrite the infinite dimensional eigenvalue equation (1 1) as an 
implicit eigenvalue problem on a finite-dimensional space. If we partition the Hilbert 
space W as H = H , 0 W,, where H , is finite-dimensional, we have the decomposition 

and the original Schrodinger eigenvalue equation (1 l), becomes 

(%(E) - Eil ,)C1 = 0 (15) 
where 

%(E)=H, +V+(El2 -HH,)-'V 

is a finite-dimensional effective hamiltonian. The matrix HI is simply the projection of 
the full hamiltonian onto the subspace W,. The second part of X ( E ) ,  equation (16), 
contains all other interactions that couple the two subspaces folded back onto the 
subspace W The complete solution of (15) and (1 6) gives all solutions of (1 1) for which 
C ,  #O, It is to be noted that the matrix X is energy-dependent and corresponds to an 
operator involving 1,2,. . . n-body interaction terms. 

As a consequence of (iHiv) we now have 

The direct truncation of the matrix H, specified by statements (iiHiv), is 
related to the term H, in equation (16)-the projection of the hamiltonian I?, 
on the subspace of d-electron states, We show this explicitly with the group- 
product wavefunction formalism (section 3.3). 
The Ligand-Field hamiltonian, HL.,, that is actually parametrized, must be 
related to an effective hamiltonian %(E), equation (16), for we seek a subset of 
eigenvalues of the full matrix H, rather than simply its projection H,. 
In practice the complete 'd-d' excitation manifold is described with sufficient 
accuracy by a single set of ligand-field parameters (=orbital matrix 
elements). This corresponds to working with a mean energy Ein the effective 
hamiltonian 

%(E)+%(@ =HL.F. (17) 
where HL,F. is the matrix that is parametrized. 
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LF analysis of transition-metal complexes 107 

(viii) Some n'-body interactions (n 2 n' 2 2) introduced by the partitioning 
procedure must be neglected. Freed's work (1974) on the foundations of semi- 
empirical quantum chemistry shows that some, but not all, of the contri- 
butions of the additional n'-electron operators can be included in the 1 and 
2-electron matrix elements specified in statement (i) when H is transformed 

Statements (i)+viii) give a formal specification of the ligand-field model which will 
be put into more concrete terms in the following sections. Equations (14)<16) are exact 
and hold for an arbitrary decomposition of 0-0. The essential physical content of ligand- 
field theory lies in its claim that there is a choice of subspace W, such that an averaged 
effective hamiltonian #(Q, or, equivalently, a perturbation approach to the correc- 
tions to HI can account for the magnetism and spectroscopy of a paramagnetic 
insulator: the physics reviewed in section 2 is the heuristic basis for this choice of W It 
is worth remarking that an analytical investigation of this kind should not be 
compromised by approximations that are necessary to make numerical calculations 
possible with currently available computational resources because the latter are subject 
to much more rapid change than the underlying theoretical structure; such approxi- 
mations should be dealt with as a separate matter. Equally it is essential that there be a 
clear path from the full many-electron formalism to the Ligand-Field hamiltonian 
HL,F. and this is the subject of the remainder of section 3. There are two stages to the 
development. First, we must characterize the subspace W,; the group product 
wavefunction formalism to be described in section 3.3 is one way of explicitly 
constructing W ,. Subsequently, we must investigate the consequences of the partition- 
ing based on this choice of H,. 

into HW.. 

3.2. The Schrodinger equation for a molecular fragment 
Under the assumption of negligible coupling between fragments, the energy levels 

of the crystal are simply a sum of fragment energies, and the corresponding crystal 
wavefunctions can be expressed as the antisymmetric components of products of 
fragment wavefunctions: 

Here the energies and wavefunctions for the fragment A are the solutions of the 
Schrodinger equation 

(gA - E f  )&' = 0. 

Interfragment interactions are responsible for the continuous spectrum above Egystal 
described in section 2. As explained there, equation (18) can be expected to be useful for 
understanding the physical properties characteristic of the ligand-field regime, and 
with this assumption the analysis can be confined to a single-fragment hamiltonian, 
which from now on we shall refer to as I? with no subscript. 

The typical fragment described by H is a first-row, transition-metal ion coordinated 
to several ligands, very commonly 4 or 6, although other coordination numbers are not 
unusual. Ligands vary widely in complexity: atomic species such as the halogens and 
oxygen, simple inorganic diatomic and polyatomic species (OH-, CN-, H,O, NH,, 
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108 R.  G. Woolley 

N;, NCS -, etc.), heterocyclic organic species coordinated through N, 0 or S (pyridine, 
quinoline, phenol, thiophene and derivatives), chelates and macrocyclic ligands, are all 
of interest. Many ligands carry substituents, often bulky alkyl or aromatic groups, far 
from the site of metal-ligand bond formation. Ligand-Field Analyses of a representa- 
tive set of such species were reviewed by Gerloch and Woolley (1984). 

The n-electron hamiltonian for a metal ion and its ligands can be written in the 
fixed-nucleus approximation in the form 

n 

(20) 
1 "  El= C A,(a)+- C'l/rap 

a= 1 2 a.8 

where Z,  is the charge on the nucleus G (in units of + e), r ,  is the distance of electron 01 
from nucleus 0, and 6(01)"' describes any additional relativistic corrections, for example 
the Darwin and mass-velocity corrections which become increasingly important for 
heavy elements, and the spin-orbit coupling operator which is always important in 
magnetism. All the complexity of solving equations (19H21) is hidden in the 
summation limit n. From the description of the range of ligands of interest just given, we 
can make a conservative estimate that the number of electrons per fragment, n, will 
typically be several hundred. Ligand-Field Analysis is less ambitious than an ab initio 
quantum chemistry approach to the Schrodinger equation based on the n-electron 
hamiltonian, equation (19). Ab initio quantum chemistry has the goal of describing the 
ground electronic state (and possibly some excited states) of the whole fragment; it must 
therefore achieve a good description of parts of the ligands stereochemically remote 
from the metal ion, as well as the local electronic structure about the metal ion. The 
latter is notoriously difficult to do well because of the correlation energy of the valence 
d-electrons; molecular C.I. calculations on small transition-metal complexes with 
configurations counted in millions have been carried out in pursuit of this goal (Luthi 
et al. 1984). 

Such calculations can give detailed information about the energetics of chemical 
bonding as well as a quantitative account of excited-state energies. While it would be 
desirable to have a quantitative account of the molecular electronic structure, such an 
approach is out of the question for the majority of transition-metal complexes of 
interest to chemists. Chemistry and studies of chemical bonding will not be confined by 
such a bind; with a combination of powerful quantum theoretical techniques guided by 
physico-chemical intuitions, Ligand-Field Analysis succeeds in cutting through this 
complexity. There results a general description of the properties of materials in the 
ligand-field regime based on parametrized matrix elements. The cost of this approach is 
that no direct account of the process of chemical bond formation can be given; the 
magnetic ion is described in situ after all chemical bonds between it and its ligands have 
been formed, and after all associated charge redistributions have occurred in 
accordance with the Electroneutrality Principle (Pauling 1939).f Nevertheless, its 
claim is, that having obtained a satisfactory parametrization of the magnetism and 
spectroscopy of more or less any paramagnetic transition metal complex, qualitative 
information about the metal-ligand bonding in the complex can be derived from the 

t The Electroneutrality Principle (Pauling 1939) states that 'Stable molecules and crystals 
have electronic structures such that the electric charge of each atom is close to zero'. Here 'close 
to zero' means between - 1 and + 1, in units of the proton charge. 
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LF analysis of transition-metal complexes 109 

parameters of the model because the model is well based theoretically. The present writer 
believes that both these two approaches are worthwhile and will remain complemen- 
tary for the foreseeable future. 

The calculations of Hillier et al. (1976a,b, Hillier and Kendrick 1976) on 
tetrahedral metal halide complexes TiCl, (do), VCl, (dl) and CoC1:- (d’) and the 
oxocation Cr03 + (d’) provide general points of convergence between the ab initio and 
semi-empirical procedures. Firstly, the calculations used a procedure in which the basis 
orbitals were determined by the SCF calculation so that the orbitals were related 
directly to the problem at hand. Next, the order of the low-lying excited states did not 
correlate with the SCF one-electron orbital energies and C.I. with single and double 
excitations out of orbitals intimately associated with the metal ion was needed to 
obtain an accurate account of the first few excited states. These calculations also 
showed little hybridization between the metal d-orbitals and either other metal valence 
orbitals or ligand orbitals. Such a picture is more in keeping with classical crystal-field 
theory than molecular orbital theory; it is encouraging to see it made explicit in these 
ab initio C.I. calculations. Perhaps the most important result of these calculations is the 
relative independence of the metal ion d-orbitals from all other orbitals; this is the key 
to the construction of the subspace W, introduced at the start of this section, and to 
which we now turn. 

3.3. Group product wavefunctions for the subspace W 
Guided by the ideas just described, and the physics of magnetic insulators reviewed 

in section 2, we divide the n electrons in the fragment into two groups, which we label M 
and L, namely the N ,  d-electrons corresponding to the presumed oxidation state (d” 
configuration) of the metal ion (group M), and the remaining N ,  electrons (group L) 
such that n=N,+N,, and we stipulate that N ,  and N ,  will be taken separately as 
constant. The specification of a well defined d”-configuration for the transition-metal 
ion in the complex is perhaps the most characteristic feature of ligand-field theory 
(Jerrgensen 1969,1981) and, as discussed by Stevens (1976), is an essential step towards 
the construction of the lowest-energy electronic states in the crystal. 

Each subset of electrons is described by a set of many-electron wavefunctions, to be 
discussed further below, and we construct a trial wavefunction for the n-electron 
fragment using the group product form (Lykos and Parr 1956, McWeeny and Sutcliffe 
1976) 

. xnll 

where C is a normalization constant, A” makes the product antisymmetric for all 
permutations of the n electrons, the {xi} are combined space (rJ and spin (si) 
coordinates, TMm and T,, are normalized antisymmetrized wavefunctions for the 
groups of electrons M and L with quantum numbers m and 1 respectively, and k is an 
index that picks out the combination (m, 1). 

A further condition on the many-electron group wavefunctions ensures that the two 
groups of electrons are ‘independent’ of each other in a sense made precise below. This 
condition is the strong orthogonality property which expresses the fact that the 
wavefunctions for the groups of electrons belong to disjoint subspaces. Although the 
wavefunctions !PMm and W,, contain different numbers of electronic coordinates, they 
can always be manipulated so as to bring a common label (say 1) to the first position; 
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110 R. G. Woolley 

strong orthogonality is the condition that integration over this variable must give zero, 
1.e. 

dx,’T’&,(x, ,... xi,x j . . . )  TL1(xl ,... xk,x p . . . ) = O  (23) s 
It seems likely that the use of disjoint sets of orthogonal spin-orbitals is a necessary 
condition for strong orthogonality to be ensured (it is obviously sufficient). 

As a result of the above we are lead to defining a basis of orthonormal spin-orbitals 
which is divided into two disjoint sets. For the ligand-field theory of transition-metal 
complexes we choose a set of five degenerate atomic d-orbitals to describe the M-group 
of electrons (x i ;  i = 1,. . . 5 } ,  and so write the basis as 

M L 
......... ................. 

(24) ......... ................. xN) ZN 

1 1 , .  x 5  xs ) (- X I , .  x5 l -  xs ) 

where xi, X i  refer to CI and j? spins respectively. The choice of these atomic orbitals will be 
deferred until later (see after equation (31)). The remaining orbitals in the basis need not 
be characterized explicitly since all that is needed for the present discussion is the 
knowledge that such a basis can be constructed, and that Slater determinants 
constructed out of the M and L subsets of spin-orbitals are automatically strong- 
orthogonal. The basis (24) is needed explicitly only if a numerical all-electron 
calculation is to be attempted. 

If the wavefunctions in equation (22) are constructed from the basis (24) if follows 
that the expectation value of E f  for a wavefunction of this type may be written in 
‘separable’ form (McWeeny and Sutcliffe 1976) 

~ k = ( 4 P d l H l 4 P d > = E M m + E L 1  (25) 

where, 

where 

2 ( K ) c o r e  = A&) + j:. ( K )  - R:.(K). (26 4 
j:. and K; are Coulomb and exchange operators respectively, which are defined by 
formulae specifying their action on a one-electron spin-orbital $, 
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am,)= dxJ/r12  P m x l , x 2 ) m z ) ;  (27 b) 

111 

s 
pY( l l :  xl, x2) is a general matrix element of the first-order reduced density operator 
constructed from the many-electron wavefunction YLp 

In equation (26), EL, is the energy of the N ,  electrons of the L subset, described by 
the wavefunction TL,, excluding any interaction with the M group of electrons, while 
EM, is the energy of the N d  electrons of the M subset described by the wavefunction 
TMm under an effective field due to the L electrons. A well defined variational 
procedure, that leads to a self-consistent choice of the {TMm,TLI} minimizing the 
energy bk, can be based on the above equations provided only that the condition of 
strong orthogonality is preserved in the variations. The wavefunctions { \ F I M m }  will be 
optimized functions for the Nd d-electrons in the effective field provided by the ground 
state of the L group electrons, YLo (the diamagnetic environment of the metal ion). 
Similarly the {TLI} can be assumed to be optimized functions for the L group of 
electrons in the average potential field of the d-electrons described by TM0. The 
optimization of the many-electron fragment wavefunction 4fd is constrained by the 
condition that N d ,  N ,  remain separately constant and the interactions between the two 
groups of electrons are thus treated in a self-consistently averaged way. Nevertheless, if 
the division of electrons into the two groups is physically realistic, the procedure can be 
expected to lead to wavefunctions for the ground state and low-lying excited states of 
the fragment that incorporate a good description of the chemical bonding between the 
metal ion and its ligands. 

Once the density matrix pY is obtained from the optimized wavefunction TLo, the 
effective hamiltonian i$M, equation (26 d) is completely specified. The wavefunctions 
{YMm) can be expanded in terms of Slater determinants constructed from the M subset 
of spin-orbitals {x}, 

Ilnul) = d y X l r . .  . . . . . . . . 2 5 )  (28) 

The corresponding eigenvalues, the energies of the d-electron states in this approxi- 
mation, are the solutions of the secular problem 

where 

The reduction of these determinantal matrix elements to combinations of orbital 
matrix elements is described by Gerloch et al. (1981). The matrix elements of the two- 
electron operator in give rise to the usual Slater-Condon Fk integrals (k  = 0,2,4) 
for the d” configuration, while the one-electron terms give rise to ‘ligand-field’ potential 
and spin-orbit coupling matrices. Terms, including relativistic ones, that are rotation- 
ally invariant with respect to the metal nucleus as origin can be used to define the 
atomic d-orbitals, i.e. the d-orbitals in the basis (24) should be thought of as referring to 
a given d” configuration for a transition-metal ion in its diamagnetic environment. In a 
fairly obvious sense this is an optimal choice of the d-orbitals, and their construction 
parallels the method of calculation reported by Hillier et al. (1976a). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



112 R .  G. Woolley 

The group product function method amounts to a choice of a set of trial 
wavefunctions motivated by physical considerations; if we set k=(m, 0), i.e. restrict the 
L electrons to their spin singlet ground state, the resulting finite set of wavefunctions 
{ 4P : k = m, 0 )  spans a finite-dimensional subspace that can be identified with the 
subspace W, introduced in section 3.1. Furthermore, the hamiltonian matrix H, in 
equation (31) must be identified with the matrix H, in equation (16); it is the projection 
of the full n-electron hamiltonian (20), (21) on the subspace of wavefunctions (4P) that 
cover W,. In order to make a satisfactory identification of the theoretical form of the 
ligand-field hamiltonian HL.F. we must next investigate the coupling between the 
functions (4p) and the complementary subspace W, under the action of the full 
n-electron hamiltonian, A, and this is the concern of the next section. 

3.4. Partitioning and the chain formalism 
The functions (q5P : k =  m, 0}  constructed according to the procedure of section 3.3 

form an orthonormal basis for the subspace W,, 

(4Pl4kNP) =8kk'- (32) 
These wavefunctions describe a manifold of degenerate, or near-degenerate, electronic 
states associated with the different arrangements of the d-electrons on the transition- 
metal ion in its diamagnetic environment; we refer to them as 'ligand-field states'. A 
basis for the subspace complementary to W, can be defined as the set of functions of 
group product type specified by equation (22) with either N ,  = N,, 1 # 0, or all possible 
values of N ,  # N,. The former correspond to many-electron wavefunctions describing 
excitations of the diamagnetic environment of the metal ion, whereas the latter describe 
either charge-transfer states involving exchanges between the d-electron subset (M) 
and the ligand electrons, or states involving interactions between the metal core and 
valence s, p-electrons and the metal d-electrons. For the moment we choose them as an 
orthonormal set {Ai} orthogonal to the ligand-field states, 

(4P IAi) = 0 (33) 

(AilAj) = dij. (34) 
A general matrix element of the effective hamiltonian &?(E), equation (16), written 

out in full, is then 

where 

is the ( i , j )  matrix element of the resolvent of A evaluated in the'subspace W,. To make 
progress with these formidable expressions we need to develop some appreciation of 
the orthonormal set {Ai>. If our choice of the space of ligand-field states is reasonable, 
most of the wavefunctions belongings to W, should be irrelevant since our concern is 
purely with the effect these wavefunctions have on the low-lying electronic states 
associated with the d-electrons. Thus we need a procedure that imposes an ordering on 
the set {Ai} determined by the strength of interaction with W , under the influence of the 
n-electron hamiltonian. 
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The analysis proposed here is based on the following observation (Haydock et al. 
1972, 1975, Haydock 1980, Heine 1980): given any hamiltonian 8 and a trial 
wavefunction lu,) it is always -possible to construct a ‘chain’ representation of the 
quantum mechanics of the system. By this we mean that we can construct an 
orthonormal sequence of states { Iu,)} such that they satisfy a three-term recurrence 
relation, generated by A, starting from [u,), 

fiIun> =anIun) + b n +  1 I u n +  1 )  + b n -  1 tun- 1) (37) 
with b- = 0, b, = 1. One can interpret this equation by saying that the coefficients 
{u,, b,} give a matrix representation of l? that is tridiagonal (Jacobi form), the {a,} being 
the diagonal elements, and the {b,} the off-diagonal ones; it is also the basis of the 
Lanczos method of finding the eigenvalues of a hermitian matrix (Paige 1972). 

Let us take f i  to be the full n-electron hamiltonian for the transition-metal complex, 
equations (20), (21) and set lu,) = I4p) for some quantum number k, and consider the 
first step of the recurrence. We have 

A14?)=‘Ok16?)  + b l k l U l k )  (38) 
where aok, b 1 k  and I U l k )  are to be determined. These quantities are given by (Haydock 
1980) 

uOk= (#plrz14?> (39) 

Thus a O k  is the average energy of the wavefunction I$?) under the action of the 
hamiltonian 8. If the starting state is chosen as the optimized solution of the equations 
described in section 3.3, a O k  = b k ,  equation (25); in this case, the wavefunctions { 4jzd} 
satisfy the analogue of Brillouin’s theorem for the SCF-Hartree-Fock one-electron 
molecular orbitals (McWeeny and Sutcliffe 1976) 

k=m,O and 
k‘=m’,O or m,l 

essentially because they are solutions of a self-consistent problem. For such starting 
wavefunctions lu,), we obtain a particularly transparent chain representation. 

When we operate with the hamiltonian H on a wavefunction l4?) we obtain a new 
state that can be thought of as a linear combination of wavefunctions that are coupled 
to I4p) under the action of A, including obviously I+?) itself. The subtraction of the 
term a,&?) in equation (40) eliminates this contribution and, ifequation (42)  is valid, 
the resulting wavefunction ( u l k )  belongs purely to the subspace w,; its normalization 
constant b,,, equation (41), is the matrix element connecting 14:”) to this unique 
wavefunction in W,. On the other hand, requiring normalization to unity of I q k )  in 
equation (40) shows that 

which identifies the matrix element bfk as the variance of the hamiltonian l? in the 
state I+?). 
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114 R. G. Woolley 

The mean energy of the wavefunction l u l k ) ,  and all further chain states Iunk), are 
calculated in an exactly analogous fashion to a O k  by putting 

a 

Unk = (u,,lHlu,,); n = 1,2,. . . . . . . . ; (44) 
alk is expected to be signijcantly different from a,,=d, because equation (42) shows 
that the wavefunctions I u l k )  constructed from optimized ligand-field states (4p} by 
this method must describe either excitations of the diamagnetic environment coupled 
with changes in the electronic state of the d-electrons and/or changes in the d” 
configuration of the metal ion. The many-electron wavefunction I u l k )  is coupled to a 
new wavefunction Iu2k) by the chain equation, (37), and in general the recursion 
continues indefinitely linking any chain state lu,) to (only) its immediate neighbours 
junk l ) ;  however, the essential point is that the influence of the wavefunctions IU,k) on 
the starting state Iuok) = I@) becomes progressively less as n increases, so that the 
recursion is a highly efficient way of selecting the significant states in the complemen- 
tary subspace W 2 .  This method could offer significant advantages for future ab initio 
computational investigations of the ligand-field regime. 

It will be appreciated from the foregoing discussion that all the chain parameters 
(a,,, bnk} are calculated by operating with the full n-electron hamiltonian, H ,  on the 
optimized ligand-field state I4p”); they may in fact be interpreted in terms of the power 
moments of the hamiltonian, p r , k ,  evaluated with respect to our chosen starting 
wavefunction, 

and these formulae again show how the restriction of the trial wavefunction to the 
subspace W forces us to deal with the multi-electron operators that arise from powers 
of the hamiltonian. From the calculational point of view the chain parameters are to be 
greatly preferred because moments grow very rapidly and easily lead to numerically ill- 
conditioned equations. 

The chain wavefunction I q k )  describes completely the many-electron environment 
of the ligand-field state I4?) in the transition metal complex; the strength of the 
coupling between the two states is measured by the magnitude of the matrix element b l k  
relative to their energy separation, laok-alkl. When this ratio is small compared to 
unity, a perturbation theory argument shows that a good estimate of the energy of the 
eigenstate of E? corresponding? to I4p) is given by 

where b k  is obtained from (25), and the perturbation term (which need not be small 
compared to 8 k )  is expressed in terms of the chain parameters (a,,, a lk ,  b l k } .  A 
comparison of equation (35) and equation (47) written out in full is in order here; 

t This is the eigenstate with the largest overlap with l4p). 
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LF analysis of transition-metal complexes 115 

equation (47) shows that, to this accuracy, the matrix 2 ( E )  is diagonal with eigenvalues 
given by 

Ekz  <6?lHl$?) + < ~ ? ~ H ~ u l k ) G ( a O k ) l l < u l k ~ A ~ ~ ? )  (48) 
where 14?) is optimized ligand-field state (section 3.3), Iulk) is the unique wavefunction 
in W, that is coupled directly to I4p) (selected by the chain equation (37)) and we have 
evaluated the resolvent matrix element 

at energy E = aOk( = 8,) with the approximation 

where a l k =  <u1kl&,k) ,  equation (44), (Haydock 1980, Woolley 1985). 
Equation (48) has something of the appearance of the 'crystal-field' formulae 

derived by Stevens (1976); the difference is that (48) refers to a particular eigenvalue Ek, 
whereas Stevens obtained a hamiltonian that is to be diagonalized to yield all low-lying 
eigenvalues simultaneously. This of course must be the 'ligand-field' hamiltonian HL,F, 
that we aim to derive from equation (35); to do this we need to relax the condition (42) 
and investigate the matrix X ( E ) ,  equation (39, in a more general basis. 

When equation (42) is relaxed there are off-diagonal matrix elements of H between 
group-product wavefunctions with 1 = 0, and we need the following generalization of 
the chain idea. The functions in equation (22) with I = 0, qLo the optimized ground-state 
wavefunction for the diamagnetic environment of the metal ion, and the {TMm} 
constructed as in equation (29), form an orthonormal basis (l&')} for the subspace W, 
of dimension d = "C, (section 3.1). Instead of a starting state for the chain as in equation 
(37), we now select this subspace as a starting subspace [S] for a generalized ('vector') 
chain; the effect of the hamiltonian A on the subspace [O] is to create another 
subspace, with the same dimensionality, which we denote symbolically by [ 11, 

A[O]+[l]. (51) 

In terms of the basis {I&?)} of [O] we see that for each k, fiIt$;) is an unnormalized 
combination, say I$:), of wavefunctions that interact with 14;). Having given up the 
condition (42), I$;) will contain wavefunctions in [O] other than purely 16;) itself. 
Guided by the chain formalism reviewed above however, we can construct the subspace 
so that it is orthogonal to [O]; this means that we construct an orthonormal basis for 
[l], say {I$:), . . . I$:)}, that is orthogonal to each basis wavefunction for [O]. We let 

H14;> = ( a [ O j ) k n / 4 : )  +(b[l])kn14i> (52) 

where aCo, and bIl, are matrices that are determined as follows. We may rearrange (52) 
to give 

I $ ) (b[ 1 ])knl$ ) = '1 4:) - (a[O])knl 4:) 

(&IC$;) = O  for all m and k 

(53) 

and then require 

(54) 
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116 R .  G.  Woolley 

so that we must have 

(aco]Ln= <42lfil4;> (55 )  

which is the matrix representation of the hamiltonian in the subspace [O]. On the other 
hand, from equations (52), (54) we have, 

(b,,,), = (4#%#@ (56) 

so that the elements of the d x d matrix brIl are the matrix elements describing the 
* coupling between the subspaces [O] and [l]. The subspace [l] is coupled to [O] and to 
another orthogonal subspace [2], and this 'vector' chain can be extended in an obvious 
fashion, 

[O]++[l]-[2]++[3]++. . . . . . . . . . -[N]++. . . 

The result of these operations is that the hamiltonian is given a tridiagonal block 
matrix representation, each diagonal block acNl referring to the matrix elements of the 
hamiltonian within the subspace [ N], and the off-diagonal blocks describing the 
coupling between adjacent subspaces 

On the other hand the Hilbert space is given the decomposition 

W,=COl 
w,=[rjo[a]o[3]o ...[ N]@ ... 

such that increasing values of N are associated with decreasing indirect perturbations 
of the subspace [O]. By analogy with the argument leading to (48), an approximate 
form for the effective hamiltonian (35) can now be written down by partitioning H and 
truncating the expansion, 

2 ( E )  2: arQl + brll(Eld - ar1,)- br + . . . . (58) 

Without any loss of generality we may take the matrix a[,] in a diagonal 
representation, 

Gq&* =alnL' (59) 

so that if(58) is evaluated at some average energy Eo (cf. section 3.1 (vii)) calculated from 
the energies of the ligand-field states, we have an expression that is strictly analogous to 
the 'crystal-field' hamiltonian discussed by Stevens (1976, 1985): 

expressed in terms of the ligand-field states and the most important contribution from 
W,. Eo could be taken as the mean of the eigenvalues of a[,], i.e. 

E0 = d - Tr (aL,,) (61) 
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LF analysis of transition-metal complexes 117 

*where d is the dimensionality of the matrix aLol. If we bring a[,] to diagonal form, we 
shall also diagonalize X(Eo) because any given wavefunction 14;) in [O] will then give 
its own scalar chain as in equation (37), so that I + ~ ) = I U ~ ~ ) ~ , , ~ ,  and (60) reduces 
essentially to the expression (47) obtained earlier. In general, the wavefunctions {I&)} 
can be expressed as linear combinations of the wavefunctions { Iuln)} obtained from 
such scalar chains, and hence the (14;)) in equation (60) have the same physical 
interpretation as the {Iuln)} (see after (44)). 

3.5. The Ligand-Field hamiltonian 
In the discussion so far we have referred to the matrix representation of the full 

n-electron hamiltonian projected onto the subspace W as the ‘crystal-field’ or ‘ligand- 
field’ hamiltonian. This is not quite standard terminology since the conventional 
ligand-field hamiltonian involves explicitly only the metal ion d-electrons, but there 
should be no real confusion. This practice has been followed so as to demonstrate the 
relationship between ab initio electronic structure theory and the ligand-field model. 

We pass to ‘ligand-field theory’ proper by integrating out the dependence on the 
Lset of electrons; it is evident from both (35) and (60) that since I4p) and I#) involve 
the ground-state wavefunction TLor the resulting effective hamiltonian for the d- 
electrons is again a functional of the ground-state density matrix pf(00 : xl, x2) as in 
section 3.3. Thus we can still write an eigenvalue equation in the form of equation (30) 
with a modified matrix 8, labelled by the Slater determinants { IsZul} constructed from 
the metal ion d-orbitals 

(nM)uu’ = <Iszul I2M + KMl Inu*l>. (62) 
For comparison with section 3.4, it may be noted that HM, equation (3 l), is equivalent 
to the matrix arol, equation (55),  while the additional term in (62), 6,, is derived from the 
second factor in ( 3 3 ,  or (60), and contains 1 -, . . . N,-electron operators (Gerloch et al. 
1981). 

It is helpful to recall how Ligand-Field Analysis is carried out in practice. A 
convenient choice of the labels for the matrix elements of fiM are the angular 
momentum quantum numbers L, S, J ,  M ,  referring to the d”-configuration; these are 
what are actually used in the computational package described by Gerloch (1984). The 
many-electron matrix elements can then be reduced by standard vector-coupling 
techniques to combinations of d-orbital matrix elements labelled by the atomic orbital 
quantum numbers 1, m,, with 1 = 2. The orbital matrix elements are the quantities we 
parametrize. In this reduction it is conventionally assumed that the Slater determinants 
labelled by u and u‘ in (62) difer by no more than two spin-orbitals because the ligand- 
field hamiltonian E?L,F., which is restricted to terms referring only to the electrons of the 
d”-configuration (Griffith 1961), is thought to have a structure like (26), e.g. 

The matrix representation of (26) in the group product wavefunction basis, HM, 
equation (3 l), has precisely the form expected of ligand-field theory based on (63). In the 
light of the foregoing discussion however it wli be clear that equation (63) is a 
simplification of the full many-electron theory of the transition-metal ion in its 
diamagnetic environment; having analysed the latter in detail in sections 3.3 and 3.4, we 
are in a position to characterize the approximations involved in setting up a ligand-field 
model. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



118 R. G. Woolley 

The effective hamiltonain (2, + GM) generated by the partitioning procedure, and 
hence the matrix H,, equation (62), has a more complicated structure than equation 
(63) because of the term GM. The conventional approach need not imply that the 
contributions of the additional multi-electron operators to (62) are simply neglected, 
for as shown by Freed in a different context (Freed 1974), matrix elements of many- 
electron operators can be partially subsumed in the matrix elements of effective one- 
and two-electron operators. Several consequences follow from this interpretation. 

(i) The conventional ligand-field hamiltonian can be given an explicit form by 
reference to the ab initio theory which justifies the structure of (63) in terms of sums of 
effective one- and two-electron operators. 

(ii) More explicitly, the Coulomb operator in (63) must be modified to take account 
of the fact that the electrostatic interaction between the d-electrons takes place in the 
presence of the L set of electrons (the diamagnetic environment); this can be described 
in terms of a spatially varying dielectric constant, and thought of in more physical terms 
as screening. The effective interelectron repulsion operator should still depend on 
interelectron separations and so can be treated by the Slater-Condon-Shortley theory. 

(iii) The effective one-electron ‘ligand-field’ potential, 8(i)L,F. contains the expected 
electrostatic terms due to the ligands as in equation (26) together with additional terms 
that originate from matrix elements of the electronic kinetic energy operator and the 
exchange-correlation potential (Stevens 1976, 1985). The ‘mixed’ nature of these one 
and two-electron effective operators can be inferred from the occurrence of the power 
moments (45), (46) of the full n-electron hamiltonian in the chain formalism used to 
calculate the corrections to the group product wavefunction calculation in section 3.3. 
If we write this hamiltonian as a sum of kinetic (?) and potential (8) energy operators, 
H = ?+ then clearly the binomial expansion of fir contains cross-terms between 
powers of Tand f? 

(iv) Freed’s argument (Freed 1974) also implies that the orbital matrix elements 
should, in principle, acquire a dependence on the particular electron configuration 
from which they were derived; that is, every low-lying electronic state of the complex 
described by the effective hamiltonian X ( E )  should have its own set of ligand-field 
parameters. Such a scheme, if strictly implemented, would have no value in practice as 
far as parametrization is concerned. 

This discussion leads to the view that the relationship of the effective hamiltonian 
theory described above to the conventional ligand-field model is necessarily approxi- 
mate because the latter describes the complete mangold of d-electron states with a single 
set of parameters for effective one and two-electron operators. The success of ligand- 
field theory is therefore seen to depend on 

(a) an assumption of anonymous configuration parentage for the ligand-field 
parameters (Gerloch et al. 1981), and 

(b) the neglect of some multi-electron interactions. 

On these grounds, the ligand-field hamiltonian in the basis of Slater determinants { IQ,l} 
can be-written 

CHL.F.luu’ = cv,., + vs.o. + V,,l”,. 

where u and u’ differ by no more than two spin-orbitals, and the contributions to (64) 
have to be interpreted in the light of (ixiv) above rather than being taken directly from 
equation (63). 
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4. Parametrization of the Ligand-Field hamiltonian 
In the previous section (section 3) we saw that the ligand-field hamiltonian, E?L,p., 

can be taken to involve effective one- and two-electron operators such that the result is 
equation (64) when we calculate the matrix elements of H L , F .  in a basis of Slater 
determinants {la,l} constructed from the metal-ion valence d-orbitals. In applications 
of Ligand-Field Analysis, the ligand-field hamiltonian H L . F .  is constructed through 
parametrization of orbital matrix elements which are then combined into the 
determinantal many-electron matrix elements using standard vector coupling tech- 
niques (Gerloch 1984). The main features of the orbital matrix element structure derived 
from the operator $M were summarized in section 3.3 (see after equation (31)) and 
apply to the ligand-field hamiltonian related to the effective operator i&M + GM 
discussed in section 3.5; the d-orbital basis referred to in section 3.5 (and in the 
following) is the same as in section 3.3. 

The modified interelectron repulsion operator in section 3.5 is again parametrized 
in terms of the Slater-Condon F ,  integrals (k=0,2,4). These quantities must be 
expected to be different from the corresponding ‘free-ion’ values for the same d”- 
configuration of the metal ion because (a) the radial parts of the d-orbitals in the 
complex differ from those in the isolated ion, and (b) the ‘interelectron repulsion’ 
operator is an effective operator that refers to the d-electrons of the ion in a specific 
diamagnetic environment of ligands. Both factors contribute to Jsrgensen’s 
nephelauxetic efect (Jmgensen 1971). The spin-orbit coupling is parametrized in terms 
of a spin-orbit coupling constant for the d-electrons and this too will be different from 
the ‘free-ion’ value for much the same reasons. Finally, the one-electron ligand-field 
potential operator VLZ.F. (which hereafter we write as gives rise to a 5 x 5 hermitian 
matrix, V, in the d-orbital basis, and the 15 independent matrix elements of this matrix 
must be parametrized. This is the ‘ligand-field potential’ matrix referred to in section 2; 
its parametrization is the main concern of this section. After introducing the Cellular 
Ligand-Field (CLF) model, the structure of V is studied using the chain formalism 
developed in section 3.4; then the cellular decomposition of the matrix V leads to the 
introduction of the {e:}-parameters on which the chemical bonding interpretation is 
based. 

4.1. The Cellular Ligand-Field model 
The Cellular Ligand-Field model (CLF)is a descendent of Schaffer and Jerrgensen’s 

Angular Overlap Model (AOM). Both are concerned with the construction and 
chemical interpretation of the matrix V. The early crystal-field approach, which was 
concerned mainly with octahedral and tetrahedral species, aimed to parametrize the 
matrix elements directly. For highly symmetrical transition-metal complexes the 
point-group symmetry reduces the number of independent matrix elements required; 
for octahedral ML, complexes, there is only one independent matrix element, AoCt‘ The 
majority of modern chemical studies however involve transition-metal complexes with 
little or no point-group symmetry, for which the traditional approach is scarcely 
feasible. Moreover, as noted in section 2, the global parametrization conveys little 
information about the chemical bonding between the metal ion and its ligands, 
something of central interest to chemists. By contrast the AOM, and its descendant the 
CLF model, aim to incorporate chemical bonding ideas in the ligand-field formalism 
by focusing on individual metal-ligand interactions in the complex. Such an approach 
utilizes the local pseudosymmetry of the metal-ligand bond, classifying interactions as 
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120 R. G.  Woolley 

~7 or x, and does not rely on the presence of any particular global point-group symmetry 
in the complex. 

In the original formulation of the AOM (Jarrgensen et al. 1963, Schaffer and 
Jmgensen 1958, 1965) it was assumed that the matrix V could be formed by simple 
addition of contributions {v’} from each ligand I considered separately; if due regard is 
paid to the geometrical disposition of the ligands in the complex, the matrices (v’} can 
be taken to be diagonal with eigenvalues {e i } ,  referred to as ‘the e-parameters’ for the 
complex. The practical implementation of the AOM scheme is usually consistent with 
this assumption, although there are complexes, for example planar 4-coordinate 
species, which cannot be satisfactorily treated in this way. 

Recent theoretical work has sought to characterize the theoretical structure of the 
matrix V by relating it to a properly formulated quantum-mechanical theory, and it is 
this theoretical approach which we now refer to as the CLF model (Woolley 1981,1985, 
Gerloch et al. 1981, Gerloch and Woolley 1984, Deeth et aI. 1986). In the main, the 
theoretical analysis confirms the validity of the practice followed by users of the AOM 
in ligand-field studies; however, it shows why the original model apparently ‘breaks 
down’ for planar complexes (Smith 1977) and it also shows what modifications must be 
made to rescue it in such anomalous cases. Most importantly, the CLF makes the 
transition from empirical parametrization to a well founded theoretical strusture that 
can be parametrized. 

The CLF model described here must not be confused with another form of the 
AOM based on molecular orbital theory that has been popularized in recent inorganic 
chemistry texts as offering a rationalization of thermodynamic and structural 
properties of both transition-metal and main-group species (Purcell and Kotz 1977, 
Burdett 1980, Cotton and Wilkinson 1980). Although the empirical record suggests 
that this other approach has proved to be a valuable heuristic for qualitative chemical 
arguments, its theoretical basis remains unclear. While the CLF and AOM models 
share a common concern with the local interactions between a central atom and its 
ligands, the decisive distinction between them follows from the recognition that the 
molecular orbital model has no role in the ligand-field theory of transition-metal 
complexes. This categorical statement may seem disturbing, conflicting as it does with 
what generations of chemistry students have been taught; it is justified by the 
observations that (a) molecular orbital theory at the SCF level does not give anything 
like a quantitative description of the magnetism and spectroscopy of paramagnetic 
transition-metal complexes, and (b) the theoretical basis for ligand-field theory 
reviewed here (sections 2 and 3) and elsewhere (Stevens 1976,1985) is not developed in 
the independent-electron molecular orbital framework. This is not to say that a 
molecular orbital model supplemented by extensive C.I. cannot do the jobf-it is a plea 
for recognition that the ligand-field and molecular orbital models are quite distinct 
schemes in electronic structure theory with their own regimes of validity. Nothing is 
gained by confusion between them. 

Throughout this review emphasis has been placed on the essentially many-electron 
nature of ligand-field theory. Such an approach has the virtue of keeping the theoretical 
discussion in close correspondence with the actual practice of ligand-field studies, but 
may seem rather far from familiar chemical bonding notions which rely on one-electron 
models of the molecular orbital type. How, then, shall we give a chemicd interpretation 

$Even so, there are doubts whether the electronic structure of a crystal of a magnetic 
insulator can be obtained starting from a molecular orbital viewpoint. 
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LF analysis of transition-metal complexes 121 

to the ligand-field parametrization? In previous discussions (Woolley 1981, Gerloch 
and Woolley 1984) we interpreted the ligand-field potential matrix, V, (section 2) in 
terms of a one-electron hamiltonian for the complex, 6, that differs from the usual m.0. 
hamiltonian by the mission of the self-consistently averaged terms describing the 
interactions between the d-electrons (which are treated fully by the Slater-Condon 
formalism in the ligand-field theory). Moreover, perhaps overly influenced by the 
widespread view among inorganic chemists that the AOM (e:)-parameters used to 
construct V should be related to squares of overlap integrals involving metal ion d- 
orbitals and 'suitable' ligand donor atom valence orbitals, we utilized a non-orthogonal 
orbital basis. 

Several technical criticisms can be made of this one-electron analysis of the matrix 
V. Firstly, it is not obvious that the use of a non-orthogonal basis is consistent with the 
many-electron, ligand-field theory formalism in which the matrix V is to be used; the 
group product wavefunction formalism described here is based on the demanding 
condition of strong orthogonality (equation (23), section 3.3), while fermion second 
quantization in a non-orthogonal basis is problematic (Stevens, personal communi- 
cation 1982, 1985). Secondly, the results involve a set of 'localized bond-orbitals' to 
mediate the ligand interactions with the d-electrons. The non-orthogonal basis of 
d-orbitals and bond-orbitals introduces overlap integrals which disappear from the 
partitioning equations only if an average-energy approximation involving the 
unperturned energy of the d-orbitals in the complex is made. 

The present writer showed how these objections could be avoided by using the 
chain formalism (cf. section 3.4) with the one-electron hamiltonian 6 and choosing the 
metal-ion d-orbitals as the starting wavefunctions 114,); all quantities in the theory are 
then well defined and constructed recursively from 6 and lu,), and the resulting orbital 
basis is automatically orthonormal (Woolley 1985). One final criticism is that the one- 
electron hamiltonian ff used in these studies was related only implicitly to the many- 
electron theory that underlies the ligand-field theory. This objection can be disposed of 
by studying the ligand-field potential matrix, V, and its associated (eL}-parameters, 
directly in the many-electron framework. 

4.2. The ligand-jeld potential matrix, V 
The spin-orbit coupling, Vs,o., is a small perturbation additional to the ligand-field 

and electron repulsion interactions and can be dropped as far as concerns the present 
discussion.? The interelectron repulsion matrix, V,,, in equation (64), vanishes for d' 
and d9 configurations; on the assumption that the parametrization of V,, for d" 
configurations, 2 < n < 8, can be dealt with separately from the optimization of VL.F. we 
can confine our attention to the d1 configuration for a discussion fof the matrix V. 

In the d' case, the set of Slater determinants { l Q u t ] ,  equation (28), reduces to just the 
simple products of tl- and P-spin-wavefunctions with the five metal-ion d-orbitals; since 
we use the d-electron wavefunctions {YMm) variationally with the ground-state 

t For first-row transition metal ions the exchange energy, P, varies between 20 000 and 
30 000 cm-', while in octahedral complexes the ligand-field splitting, Aoct, varies from 5000 to 
over 30000 cm-'. The spin-orbit coupling energy is these systems is much smaller, normally a 
few hundred wavenumbers. For ions from the second and third transition series, the interelectron 
repulsion energy is reduced while the ligand-field splitting is usually enhanced; the spin-orbit 
coupling energy can be as much as an order of magnitude bigger, as compared with first-row 
transition metal ions. As a result, diamagnetism is much more commonly encountered with 
complexes of the heavier metal ions; ligand-field theory is not applicable to such cases. 
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122 R. G .  Woolley 

wavefunction for the L set of electrons, Th, we may write a typical ligand-field state as 

l d k )  is a d-orbital calculated from the rotationally invarient part of i??M (section 3.3) and 
may be taken with either spin wavefunction. If we use a wavefunction of the form of (65) 
in equation (60), and integrate out the dependence on the L set of electrons, the resulting 
matrix A,, equation (62), is labelled by the five d-orbitals and can be identified directly 
with the 'ligand-field potential' matrix V, 

d l  (d9) case; ligand-field 
spin-orbit coupling RM*V { potential (66) 

matrix. neglected (equation (62)) 

The eigenvalues of V (or equivalently of n, in this case) are the energy levels of the 
d-electron in the diamagnetic environment provided by the remainder of the 
complex-these energies have exactly the same interpretation as the 'ligand-field 
orbital' (LFO) energies, EZ, we defined previously (see especially 1II.B in Gerloch and 
Woolley (1984)). 

If, purely for simplicity, we suppose that the transition-metal complex has 
sufficiently high point-group symmetry that it is possible to choose d-orbitals such that 
no two of them belong to the same row of the same irreducible representation, we may 
use directly the chain formulae derived earlier to describe the eigenvalues of (66). For a 
starting state IUOk)  of the form of (65), the assumed high symmetry of the complex 
implies that the d-orbitals are not mixed by I? and we may write down directly the chain 
approximation (47), or equivalently (48), for the corresponding eigenvalue of A, 

b:k 

( ' O k - a l k ) .  
E k  M ELo + E M ,  + 

The eigenvalues of V(i.e. ii,) are given by (Ek-ELo),  so 

In this expression we have, 

where is now the one-electron operator specified in equations (26d), (26e) for 
N ,  = 1 (with the Coulomb operator (rKA)-' omitted). E M ,  may be written as the sum of 
the d-orbital energy calculated from the rotationally invariant part of i??,, and the 
expectation value of the purely non-spherical part of 2M which acts on the d-orbitals 
as a static 'crystal-field'-like potential, 

=&+ <dkl (2M)Non-sphldk>.  (70) 

As for the interpretation of the second term in equation (68), this hinges on the 
nature of the chain state Iulk) coupled to the ligand-field state Ic#$'=l) by the full 
n-electron hamiltonian H .  It is plausible to argue that the physically important 
contributions to Iulk) will be many-electron wavefunctions obtained from the starting 
ligand-field state by substitution of ligand valence orbitals in place of the metal ion 
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L F  analysis of transition-metal complexes 123 

d-orbital (see the comments after equation (44)). If only single substitutions are 
considered we can write 

where 141k) is a spin-orbital that is orthogonal to I d k )  and to the orbitals used in the 
construction of lYLo) (to maintain strong orthogonality); for such functions we can 
integrate out the dependence on the L set of electrons and write 

a l k -  ( u l k 1 8 1 u l k > = E L o +  < 4 1 k 1 2 M 1 4 1 k )  

= E L o f e , k  (72) 

b l k -  ( 4 ~ = 1 1 E i l u l k ) = ( d k l ~ M 1 4 L k )  (73) 

where A?M is the same one-electron operator as specified in equation (69). 
To the extent that the separability implied by (71) is valid, it seems correct to choose 

the orbital 141k) as the orthonormal chain orbital constructed from the one-electron 
hamiltonian SM with Idk) as the starting orbital, since this construction gives a 
complete description of the orbital environment of Idk) under the effective hamiltonian 
2M (Woolley 1985). Combining equations (68)-(73) we finally obtain the ligand-field 
orbital energies as 

in close correspondence with our earlier purely one-electron analyses. Clearly this is an 
heuristic argument; in particular the ansatz (71) requires scrutiny to verify that 
wavefunctions of this form do make large contributions to I u l k ) .  

The results given here are equivalent to those in Woolley (1985) provided that the 
one-electron hamiltonian discussed there is replaced by the one-electron effective 
hamiltonian, &M, defined here for the d l  configuration. Accordingly we have the same 
interpretation for the ligand-field orbital energies { E : }  as before; they consist of three 
types of contribution. Firstly, all EZ contain the d-orbital energy E which is 
uninteresting and, as we shall see, can be eliminated completely from the ligand-field 
parametrization. Secondly, there is the mean static potential due to the non-spherical 
perturbation of the metal ion in its crystalline environment, (&M)Non-sph. Thirdly, there 
is the term involving the square of the resonance integral b l k  and an energy 
denominator that measures the coupling of the orbital Idk) to this environment under 
the action of we refer to this contribution to E: as the mean dynamical 
potential, so 

mean static mean dynamic 
LFO energy E:  = d-orbital + potential for + potential for 

orbital I d k )  orbital I d k )  
energy E 

What of the relative magnitudes of these two mean potentials for the d-orbitals 
(Idk)}? One can make the following qualitative argument (Woolley 1981). Both mean 
potentials depend on matrix elements of the non-spherical perturbation (i@M)Non-sph 
which we can think of as integrals over all space; experienck with SCF band-structure 
and molecular calculations of the X,-type suggests that this perturbation should (a) be 
small within the atomic volume of the metal ion, and (b) increase with distance from the 
metal nucleus. Furthermore we know from such calculations that lr4d(r)12 for the 
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124 R. G. Woolley 

valence d-orbitals is strongly localized about the metal nucleus which, as just noted, is 
the region of space where ($Mhon-sph is expected to be small; hence the integrand for the 
mean static potential is nowhere large. On the other hand, the orbital I 4 l k )  is expected 
to resemble a superposition of metal-ligand bond-orbitals with valence electron 
energies; thus the mean dynamic potential receives contributions from a much larger 
region of space that includes the bond overlap regions where ($M)Non-sph is most 
important. On this basis we may usually expect the mean dynamic potential (the third 
term in (74)) to make the dominant contribution to the LFO energy E z ,  measured with 
respect to E.  Ultimately, the chemical bonding interpretation of the ligand-field 
formalism depends on this claim. 

One other aspect of the ligand-field potential matrix, V, that has emerged from 
recent Ligand-Field Analyses as a quantity of chemical interest (Deeth and Gerloch 
1984 a, b, 1985 a, b) is the trace, xexp, of the experimentally determined matrix, Vexp, 

ccxp = Tr (Vex”). (75) 

The theoretical expression for x=Tr(V) can be calculated formally from (74) by 
summing over the index k, 

in an obvious notation; the trace of the wholly non-spherical potential ($M)Non-sph in 
the d-orbital basis vanishes. is expressed as a sum of rational fractions with positive 
numerators and can therefore vanish only accidentally; thus there is no barycentre rule 
for the splitting of the d-orbital energy levels (Gerloch and McMeeking 1975). We shall 
return to further discussion of 1 after the (e:}-parameters associated with V have been 
introduced; this is the concern of the next section. 

4.3. The local cellular potential and the (e:)-parameters 
In the previous section we discussed the matrix V starting from the many-electron 

theory, and in particular studied its eigenvalues which are interpreted as the d-electron 
orbital energies (ligand-field orbital energies’) arising from a d’-configuration 
calculation, a standard part of Ligand-Field Analysis (Gerloch and Woolley 1984). We 
now wish to change our point of view and concentrate on the local functional group 
interactions between the metal ion and the ligands in the complex. One of the key ideas 
of the CLF model is the representation of the matrix V as a superposition of disjoint 
contributions (el} that can be associated with N non-overlapping ‘cells’ (regions of 
space) into which the molecular coordination sphere can be divided. Formally, this can 
be related to a cellular decomposition of the ligand-field potential operator p( E pL,F, in 
equation (64)). 

The metal-ion d-orbitals (Idi)} are taken initially as quantized with respect to a 
global coordinate frame attached to the ion; in terms of these orbitals we may write 

(dilPldj>=(V),, i,j= l , . .  .5. (77) 

In general p will contain both local and non-local operators (cf. the coulomb and 
exchange terms in equations (26) and (27)), but physical arguments based on the 
localized nature of the d-orbitals and the dielectric screening expected in the true, 
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LF analysis of transition-metal complexes 125 

effective operator P(i)L.F., equation (64), provide a justification for writing it in a cellular 
form (Gerloch and Woolley 1984), 

N cells 
P= c fi', 

1 = 1  

The choice of cells is discussed further below. 

matrix V, 
Combining (77) and (78) we have a corresponding cellular decomposition of the 

N cells N cells 

I = 1  I =  1 
(v)ij= 1 (dilv^'ldj)= c (vl)i? (79) 

Each of the hermitian matrices v' can be brought to diagonal form by a unitary 
transformation, 

(80) R'v'R't R'R'? = R'tR' = 1 

where el is a 5 x 5 diagonal matrix with diagonal elements {e;}. On the other hand if, for 
each cell I ,  we explicitly construct the d-orbitals that diagonalize the cellular potential 
fit, through the transformation 

(dkl =I (R' )ki(dil (8 1) 

we see that the eigenvalues (e:} for cell 1 are just the expectation values of the cellular 
potential in the local d-orbital basis (81), 

i 

ei= (d;lfi'[d;). (82) 

Collecting all these formulae together enables us to write (Woolley 1981, Gerloch and 
Woolley 1984) 

N cells 5 modes 

( v > i j =  (dil Pldj) = 1 1 (R1)h(R')kjek; (83) 
I = 1  k 

the notation of writing the second summation over five 'bonding modes' anticipates the 
fact that the eigenvalues (e;} will normally be symmetry classified as 0, K,, . . . with 
respect to the metal-ion-ligand I bond-vector. 

We define a local coordinate system for each ligand by taking a vector Qf along the 
transition-metal-ion-ligand donor-atom bond as the local polar axis so that Qf has 
coordinates (IQJ, Of, + I )  in the global coordinate frame in which the orbitals ( Id i ) }  are 
quantized. The d-orbitals (Id;)) quantized in this local frame can be given the 
symmetry classification 6, K,, nY, bxy, 6,z-,2 with respect to Qf, and these symmetry 
labels are used to identify the distinct bonding modes. When the local pseudosymmetry 
of cell 1 is effectively C,, or higher, symmetry arguments suggest that the d-orbitals 
quantized with respect to Qt as polar axis will diagonalize the potential 6' with 
expectation values 

(d:21fi'ldi2) =ef 

(dL.Ifi'ld~.) = ek,; (d~zlijfld,!z) = eky 
(d\,IijLldL,) =ekxy; (dX2--y21C11dXz-y2) =e6,2-yz. I 
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126 R .  G. Woolley 

In such cases the unitary matrix R' can be calculated purely from the geometry of the 
molecule as an orthogonal rotation matrix relating the global coordinate frame and the 
local coordinate frame for cell I based on Ql as polar axis. 

These observations have an important bearing on the practical implementation of 
the CLF as a parametrization scheme. If we had been given the explicit mathematical 
form for the potential P in equations (77) and (78) any decomposition into cells would 
be as valid as any other, and the unitary matrices {R'} could then be calculated from 
(80) for any choice of cells; the 1 : 1 identification of cells with ligands is the natural, 
physical choice. However, when these equations are used parametrically, the matrices 
{R'} must be assumed to be known because we do not have Pexplicitly; in practice they 
are normally calculated as rotation matrices from the molecular structure as just 
outlined. At the same time, we should recognize the requirement that the rotation 
matrix R' must also diagonalize the local cellular potential C', as expressed by equation 
(80); some care must therefore be taken over the cellular decomposition of the potential 
P, equation (78). Usually, there is a straightforward 1 : 1 identification between cells and 
ligands, as assumed in the original formulation of the AOM (Schaffer and Jerrgensen 
1958, 1965, Jlargensen et al. 1963, Schaffer 1968). Equally, however, the theoretical 
consistency of the scheme may require there to be more cells than ligands in the molecular 
coordination sphere. A well documented case of this type is exemplified by square- 
planar complexes for which, in addition to four cells associated with the four ligands in 
the molecular (xy-)plane, we must also take two further cells that are symmetrically 
disposed about the z-axis above and below the molecular plane and are coordinatively 
void (Smith 1977, Mackey et al. 1979, Woolley 1981, Gerloch 1984, Deeth and Gerloch 
1984 a, b, 1985 a, b). 

In summary then, the choice of cells in the CLF is determined by two requirements: 

(a) the ligand-field potential should ideally be described by the expectation values 
alone (84), since it is obviously desirable to have as few parameters as possible; 

(b)  each cellular potential matrix in the d-orbital basis, vl, should be diagonalized 
by a unitary matrix R' determined purely by the structural parameters of the 
complex. 

There are physical circumstances where (a) and (b)  cannot be achieved simultaneously, 
for example with chelating ligands, or ligands with donor atoms having lone pairs 
(Gerloch 1984, Deeth and Gerloch (1985 a, b). In such cases R' is calculated from the 
molecular structure, and we admit off-diagonal elements to the matrix e'. The normal 
situation however is that each ligand 1 is described by the five diagonal matrix elements 
(at most) displayed in (84). 

The parametrization of the ligand-field hamiltonian HL,F., equation (64), is carried 
out with the aid of equation (83): a set of parameters {e:} is guessed, the associated 
matrix V is computed from (83), and this V forms the input for the construction of VL.F. 
in equation (64) by vector coupling. The members of the parameter set [P J are varied 
until the resulting eigenvalues of HL,F, give the closest fit to the energy levels deduced 
from the experimental data, cf. figures 1 and 2. One then has a best-fit value for the 
matrix Vexp, and associated with it a set of best-fit parameters {e:}exP (as well as best-fit 
parameters for interelectron repulsion and spin-orbit coupling). To be precise, we 
should note that all the experimental information is related to energy level dierences, 
and so the diagonal elements of V are determined only to within some constant V, 
corresponding to a choice of energy zero, 

(v), = (V)@" + vosij; (85) 
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LF analysis of transition-metal complexes 127 

apart from this ambiguity, which causes no difficulty, we shall assume that the best-fit 
matrix Vexp is unique, i.e. the equivalence class of matrices M that reproduce the 
experimental data can be expressed as above, equation (85). In practice, since the matrix 
Vexp is constructed with the aid of equation (83) the choice of energy zero is determined 
by the choice of parameters {e:)"P; we return to this point below (see equation (95)). 

The promise of the CLF model is that the parameters {e;} can serve two purposes: 

(i) to facilitate the reconstruction of the global ligand-field potential matrix V, 
even when the complex has little or no point-group symmetry, 

(ii) to provide information about the 0, nx-, . . . bondmg modes of the local metal- 
ion-ligand 1 interactions. 

It is clear that there is much to commend the use of equation (83) for achieving (i); 
varying the {e:}exP is a technically very convenient way of constructing the best-fit 
matrix Vexp because it brings useful information about the molecular structure to the 
parametrization in accordance with chemical intuitions about bonding, e.g. the 
pseudosymmetry argument leading to equation (84). Moreover, equation (83) tells us 
that any given set of (e:)-parameters produces a unique matrix V, so there is a direct 
correspondence between this chemical information and the parametrized Ligand-Field 
hamiltonian. 

However, the chemical interpretation of the resulting set of parameters does require 
further discussion because another question about the relationship between V and the 
{eL}-parameters arises from the foregoing: Given some hermitian matrix V (for example 
the best-fit Vxp for the complex), and the unitary structure matrices R' for each cell 1 in 
the complex, one can ask whether the set of parameters {e:} used in the construction of 
V with the aid of equation (83) is unique, or are there actually many distinct sets of 
parameters (e:} that generate the same matrix V? Analysis of equation (83) (Woolley 
1981) suggests that, superficially at least, the {el} ought to be more or less arbitrary 
because we have apparently more unknowns than independent equations if we are 
given V and search for the {e'}. Such a conclusion, if valid, would be fatal for (ii) above. 
However, the position is not as bad as this since equation (83) must be supplemented by 
a variety of equations of constraint? imposed by the physics of the situation, and these 
are usually sufficient to guarantee that a physically acceptable set of {e:}-parameters 
has a well defined relationship with the matrix V. The reader is referred to full 
discussions of the matter (Woolley 1981, Gerloch 1984). 

It is important to note that the constraints imposed on the {e:}exP-parameters imply 
nothing about the signs and magnitudes of the individual parameters not determined by 
symmetry, and so we expect the CLF parametrization to reflect faithfully electronic 
properties of the complex. This argument rests on general assumptions about the 
molecular structures and chemical species that we commonly deal with in ligand-field 
studies; there are bound to be cases where the arguments break down, and it is essential 
that the user of the CLF checks that these assumptions are physically reasonable in any 
given case. 

A physically acceptable set of (e:}-parameters must have definite relationships between its 
elements; these are normally sufficient to make the Vcte' relationship unique. For example, 
chemically equivalent ligands are expected to have identical (e:}-parameters, and the local 
pseudo-symmetry of any one cell may impose relationships on the parameters for that cell. These 
statements do not rely on the presence of non-trivial point-group symmetry in the molecule as a 
whole. 
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I28 R .  G. Woolley 

4.4. The chemical interpretation of the {e:}-parameters 
The equation reviewed in section 4.3 take a particularly simple form in the special 

case of a complex, ML, containing a single ligand L, and this will be used to introduce 
the chemical bonding ideas. The summation over I in equations (78), (79) and (83) and 
the associated 1 superscript can be dropped and, assuming C,, symmetry or higher for 
the molecule, the matrix V will be diagonal if we chose the ML bond-vector as the 
quantization axis for the d-orbitals. Comparison of equations (74), (79), (82) and (84) 
then shows that we may write 

LFO energy EZ = CLF ek-parameter, (86) 

and for this case, equation (74) is also the theoretical expression for the {e,}-parameters, 

A formal analysis suggests that (dr21(~~)Non-sphldzZ) makes a positive contribution to 
e,, because (&M)Non-sph is expected to be positive in the bond-region, while the 
analogous terms of n and 6 symmetry are normally negligible in comparison (Woolley 
198 1). The discussion following (74) of the relative magnitudes of the three terms in E: 
suggests that the last term in (87) is the one ofinterest; its numerator is positive because 
it is a matrix element squared, and therefore the sign of this term is governed by the 
energy denominator. Usually the energy, el,, of the o-orbital coupled to Idz2) is 
lower than that of Idz2) itself(i.e. el, < E )  so we expect both the second and third terms to 

The perturbed d-orbital energy EM, in (87) is expected to be close to the d-orbital 
energy, E,  and hence ek is only significantly different from E if the molecule is such that the 
chain orbital I(blk)  has an energy ti?,,, within a few eV (say O(lO4)cm-' rather than 
O(105)cm-') of E.  This is normally possible only if the ligand has valence orbitals 
having the symmetry of the d-orbital Idk) and able to interact with metal ion valence 
s- andlor p-orbitals. The local pseudpsymmetry of the metal-ligand donor-atom bond 
is useful here because it provides an approximate symmetry-based classification of the 
fragment orbitals that may contribute to a given I+lk), and it also gives approximate 
selection rules for the resonance integrals (dkl($M)Non-sphl&k) since the molecular 
point-group symmetry is carried by (&M)Non-spb If the local pseudosymmetry is the 
same as the point-group symmetry of ML, appropriate pseudosymmetry statements 
become exact. A useful way of thinking about the orbital is to picture it as a bond- 
orbital made up from a superposition of metal s and p-orbitals and suitable ligand 
orbitals with valence electron energies. 

It will be seen from (87) that the theoretical {ek}-parameters contain the d-orbital 
energy E. Measured with respect to the conventional zero of energy corresponding to 
ionization, d-orbital energies are typically 5 lo5 cm- l; experimentally determined 
{ek}-parameters are typically 5 5000cm- '. There is nothing to worry about here, for the 
apparent discrepancy merely reflects a different (implicit) choice of zero of energy for 
the experimentally determined parameters; we set 

give positive contributions to err. I 

4 = ek - ed, k= u, n,, . . . . (88) 

and identify the { f&} with the experimentally determined parameters {ek}cxp; the 
definition (88) eliminates the large, but uninteresting, d-orbital energy, E,  from the 
formalism. For the ML complex, the (Ck} quantities are just the spacings between the 
iigand-field orbital energies (E:: and E,*. 
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LF analysis of transition-metal complexes 129 

A ‘large’ value of an Zk-parameter is a few thousand wavenumbers which, by 
chemical bonding standards, is still a small energy; a ‘large’ &parameter is not therefore 
indicative of substantial participation of the corresponding d-orbital, Idk), in metal- 
ligand bonding. Rather, such a result tells us that the ligand in the complex has 
associated with it a chain orbital 141k) reflecting the bonding interactions between 
metal s and/or p-orbitals and appropriate ligand valence orbitals. On the other hand, a 
small or zero value for an %-parameter does indicate the lack of participation in metal- 
ligand bonding of such ligand valence orbitals. It cannot be emphasized too much that 
the discussion refers to the molecule as it is rather than to the putative donor/acceptor 
properties of the ‘free’ Iigands. Synergic ‘back-bonding’ or other electronic processes 
will have taken place to meet as far as possible the requirements of the Electroneutrality 
Principle, and describes the environment of the metal ion in the complex in the 
final equilibrium structure of the crystal. Thus the metal ion d-orbitals serve as a probe to 
monitor the signiLfcant chemical bonding interactions that have brought about formation 
of the complex. 

In the case of the general complex, ML, (n > l), the identity (86) no longer holds and 
the {e;}-parameters must be identified through the cellular decomposition (79)-(82). 
Nevertheless, the {el}-parameters for a given cell 1 can be shown to have a structure 
similar to the {ek} for the ML case, with the difference that orbitals and potentials refer 
exclusively to just cell 1. Equation (79) is valid for the particular d-orbital representation 
{Id,)}  in which V is diagonal, with eigenvalues E :, so that we may always write 

where the R’ matrices relate the orbitals {Id,)} to the d-orbitals in the local frame for 
cell 1. The first two terms in (74) can be put in this form directly if we write 

The cellular decomposition of the mean dynamic potential is more involved, and 
requires consideration of the energy factor (EMk-Zlk ) -  as a resolvent matrix element 
using a representation of the chain orbital 141k) as a superposition of localized bond- 
orbitals ( I K ~ ~ ) }  associated with the individual cells (Woolley 1981, 1985, Gerloch and 
Woolley 1984). Each cell 1 is treated in a way that parallels the ML case and we find that 
we may write , 

el = E / N  -t e[(static) + e:(dynamic) (91) 

where 

e:(static) = (dll O’ld:) (92) 

In these expressions, the {Id;)} are the d-orbitals quantized in the local frame for cell 1, 
equation (81), 0’ is obtained from (88), and the {Ixl,>} are localized bond-orbitals with 
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130 R. G. Woolley 

mean energy Eza associated with cell 1. Once again we eliminate the d-orbital energy, E, 

by setting? 

EL=ek-ei, k=o,n, ,... . (94) 
and identify the {EL} with the experimentally determined parameters {e:}exp. The 
interpretation and use of equations (91H93) is completely analogous to that given 
above for the ML case, following equation (87). 

The definition (94) implies that, for each cell I, one of the &parameters is identically 
zero, and the other is negligible either because of the local pseudosymmetry or because 
of the weakness of &symmetry interactions; at the same time equations (91)-(93) show 
that the ei-parameters=;./N. From equation (83) we then see that (88) and (94) 
correspond to writing 

N cells 

(V)ij=(V):y+ C (e36ij 
'=1 - c v > y p  + E6, (95) 

where Vexp is constructed in the usual way from the (EL}-parameters using (83), and the 
metal-ligand interaction in cell I is normally described by three parameters: E:, Ekx, i?;',. 

We expect, and find in practice, substantial positive E:-parameters because 
coordinated ligands always carry suitable orbitals of local o-symmetry; this is what we 
mean when we refer to the Lewis base (or o-donor) behaviour of a ligand as far as its 
o-interactions are concerned. The Zi-parameters may be equal by symmetry although 
we commonly need to distinguish between x-interactions parallel and perpendicular to 
some plane defined by the local molecular structure within a cell, for example a plane 
containing the metal ion and an aromatic ring system. The Zi-parameters vary in sign 
and magnitude from case to case, and therein lies much of the interest for chemistry 
afforded by the CLF parametrization of V; both n-acceptor and n-donor behaviour 
(Zn < 0 and Ex > 0 respectively) $ can be monitored through Ligand-Field Analysis. 

There exists one class of complexes for which some large and negative (several 
thousands of wavenumbers) { ei)exP-parameters are found. These are planar co- 
ordinated species, and the cells associated with g: < O  are those lying above and below 
the coordination plane, that is, the 'empty' or coordinationally void cells. Such empty 
cells are required because assigning the whole coordination volume to just the ligands 
is not consistent with the requirement (section 4.3) that the (R'} matrices derived from 
the planar molecular structure diagonalize the {v'} matrices of the ligands. There are no 
ligand orbitals with significant amplitude on the axis through the metal ion and 
perpendicular to the molecular plane, and the {Ixza)} orbitals for these two cells are 
mainly metal valence orbitals with energies above the d-orbital energy E, hence the 
negative sign of the corresponding e,-parameter (Woolley 1981, Gerloch et a1. 1981, 
Gerloch 1984, Gerloch and Woolley 1984, Deeth and Gerloch 1984 a, b, 1985 a, b). An 
example is discussed below. 

Table 1 shows a set of typical {e;}""P-parameters obtained from recent Ligand-Field 
Analyses of +XI oxidation state metal complexes; they are determined to within a 

In most practical applications, the local pseudosymmetry of the cell requires edL, = efix2-y2 
and we do not distinguish between them. 

The donor/acceptor classification invoked here is a convention-an agreed definition 
determined by utility-and refers to metal-ligand interactions in the jinally formed complex, 
rather than the free ligand. 
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LF analysis of transition-metal complexes 131 

Table 1. Typical values for 'best-fit' {e:}exP-parameters (in cm-') for complexes of oxidation 
state +II metal ions of Group VIII. (1 and I are with respect to the plane containing the 
metal ion and the ligand. The {e:}CXP are to be identified with the theoretical quantities {EL} 
in equation (94). I 

Ligand Typical { e:}eXP-parameters Comments 

N H 3  e, w + 5000; le,[ 6 50 c-donor only 
Phosphines 
pyridine 
quinoline 
CI-,Br- +3000,5e05 $4000; +5005ee,5800 'moderate' n-donor 

e, x + 6000; err x - 1500 
e, % + 4000; le, ,, I 5 50; + 50 5eff1 5 150 

e, w + 4000; le, ,, I 5 50; en, x - 500 

'strong' o-donor and n-acceptor 
'weak' n-donor I to atomatic ring 

'moderate' n-acceptor 

scatter of about f. 10%. The relative magnitude and signs of these quantities accord 
well with accepted notions of the bonding modes of these ligators. A central feature of 
both the empirical record of analyses and the theoretical structure described here, is 
that the {ei}exp-parameters refer to ligands (or coordination voids) in the actual 
molecule; as a result we ought to expect to find cases where the presence of particular 
ligands in a complex has discernible effect on the ligand-field parameters of other 
ligands-the very stuff of chemistry. Such is the case, and this means that 'parameter 
transferability'-the notion of using { e~}"P-parameters obtained for a ligand in one 
complex in an analysis of another complex without modification-must be used with 
care. 

One approach to parameter transferability which shows promise is based on the 
information contained in the trace, p, of the ligand-field matrix, Vcxp. For fixed metal 
oxidation state, Cexp is approximately invariant for complexes that have related 
coordination. This conclusion has been demonstrated in recent Ligand-Field Analyses 
of a series of six chlorocuprates (Deeth and Gerloch 1985a) with geometries 
approaching that of a tetragonally distorted octahedron (see figure 4), and confirmed 
for a group of isomorphous trigonal bipyramidal complexes (see figure 5) in which the 
ligand type is fixed and the metal ions, M, vary from Cr to Cu along the first transition- 
metal period (Deeth and Gerloch 1985 b). 

In the chlorocuprates, there are four equatorial chlorine ljgands (labelled a, b in 
figure 4) defining a near-D,, geometry for the planar CuCl2- ion; the axial chlorines 
(labelled c in the figure) lie progressively further away from the CU(II) ion as we move 
through the series (iHvi), which are distinguished by the accompanying cations. The 
last member, (vi), is a square-planar species and is expected to require parametrization 
of the coordination voids above and below the molecular plane (the final result of 
progressive tetragonal distortion). The dotted lines in figure 4 mark ligands that may 
act as bridges to other Cu(n) centres. The ligand-field is described by e,, e,, enll  
parameters for the equatorial chlorines (effL = enll  except for (i) where e, ,I = 0), and by 
e, only for the axial chlorines. Structural data, CLF parameters and Cexp values are 
reported for these species in table 2; the mean value of Cerp = 22 650 cm- and its 
variation through the series is 5 lo%, values that are well in line with those found 
earlier in a series of copper (n) amine complexes (Deeth and Gerloch 1984 a). The trends 
and behaviour of the parameters shown in table 2 are discussed in Deeth and Gerloch 
(1985a); perhaps the most striking feature to note here is the steadily increasing 
negative values for e,(ax) as the R,,,,(ax) distance increases, reaching a value of 
- 3200 cm-I for the voids in the planar species (vi). 
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132 R .  G .  Woolley 

' 
C' 

Figure 4. The coordination geometry in tetragonally distorted octahedral chlorocuprate 
complexes. Dotted lines indicate possible bridges to other Cu centres. 

Table 2. Structural (A) and best-fit ligand-field parameters (cm- I)  for a series of chlorocuprate 
complexes. 

6) (ii) (iii) (iv) (v) (vi)t 
{ei}exp Cations Cs NH,Me NH,Et NH,n-Pr Pt(NH,), nmph 

4500 4800 4737 4900 5100 5300 
1 loo$ 550 455 600 1100 850 
375 - 600 - 828 - 750 -2050 -3200 

23150 22400 20930 22900 25100 21600 

2.98 3.04 3.26 - 
2.28 2.29 2.28 2.26 

t nmph =(C6H,(CH2)2NHZCH:),. 
$ e,, value (e, ,I = 0). 

ccXp= C (eL+e,', +el l ) .  
N cells 

2=1 

Turning now to the second example, the high-spin complexes [M(Me,tren)Br]Br: 
M = Cr, Fe, Co, Ni, Cu; Me,tren = tris(dimethylaminoethyl)amine, are members of an 
extended isomorphous series of trigonal bipyramidal transition-metal compounds; the 
coordination about the metal ion M is shown in figure 5. The equatorial nitrogens are 
nearly coplanar with the central metal ion; the bromine and central nitrogen of the 
Me,tren ligand are colinear with the metal ion and therefore the e, (axial) parameters 
can only be determined as an average for this pair of ligands. The ligand-field is 
described with the parameter set e,(G), e,(Br), and e,(Neq); the axial nitrogen has no 
n-bonding function. Structural data, best-fit ligand-field parameters and Cexp values 
for this series are reported in table 3. The mean value of Cexp is 23 28Ocm-' and again 
its variation is 5 10% for the different metals; notice in particular that the value of c""" 
for the CU(II) complex here is close to that found in the chlorocuprates. Here the 
noticeable feature of the table is the near constancy of both the {e:)exP-parameters and 
Cexp as the metal ion, and hence d"-configuration, varies across the period (Deeth and 
Gerloch 1985 b). 
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I 
X 

Figure 5. The coordination geometry in Me,tren complexes: M = Cr, Fe, Co, Ni, Cu; R = Me. 

Table 3. Structural (h; and degrees) and best-fit Iigand-field parameters (cm-') for a series of 
[M(Me,tren)Br] Fomplexes. 

M 

Cr Fe c o  Ni c u  

- 
6000 
3600 
1000 

25200 

2.21 2.151 
2.15 2.080 
2.482 2.43 1 

117.4 1176 
4000 4000 
4000 4000 
1000 1000 

22000 22000 

2.10 
2.13 
2.467 

119.0 
5000 
3900 
1000 

23700 

2.07 
2.14 
2.393 

119.1 
5800 
3300 
1000 

23500 

These findings have been related to the theoretical formalism as follows (Woolley 
1985). Using the unitarity of the R' matrices with equation (83) we obtain 

N cells 5 modes 

C=Tr(V)= 1 1 e: 
I = 1  k 

which may be compared with (76). The connection with the experimentally determined 
parameters is established using (94) and (96); we have 

N cells 5 modes N cells Ncells 

1=1 k 1=1  1=1 
I= C C ;:+5 C = Z x p + 5  C e:, (97) 

and if we separate ei into the d-orbital energy, E, and the correction to E of &symmetry 

ei = E/N + Aei (98) 

y p q 1  (99) 

we obtain, 

where C1 is defined in (76), because the (Ae:) terms can be neglected in comparison with 
El (Woolley 1985). The approximate constancy of the sum of {e:)exP-parameters 
identified by Deeth and Gerloch (1984 a, 1985 a, b) therefore refers to C1; this is in 
accordance with intuition for c=Co+C1 is dominated by the d-orbital energy, E,  

which is expected to alter markedly with variation in transition-metal ion. 
The term El was examined in section 4.2 (equation (76)) where we saw that it is 

essentially a sum over d-orbital-ligand resonance integrals squared and so must reflect 
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134 R. G. Woolley 

changes in the radial parts of the d-orbitals. The main factors affecting these matrix 
elements are: 

(a) the number, nature and bond-distances of the ligands about the metal ion, 
(b) the oxidation state of the metal ion. 

Tables 2 and 3 show that some variation in (a) is permissible without greatly affecting 
p. On the other hand, a change in oxidation state can be expected to have a 
considerable effect on the radial part of the d-orbitals, and the El values for metals in 
different oxidation states are expected to be quite distinct. Preliminary results appear to 
bear out this expectation (Deeth and Gerloch 1985, personal communication). The 
finding that c'"" can be approximately invariant over a range of related compounds 
provides a basis for parameter transferability; one can discriminate between different 
parameter sets that reproduce the experimental data equally well by excluding those 
that give Cexp values out of line with the empirical trends exemplified in tables 2 and 3. 

No comprehensive Ligand-Field Analyses are described here, for these are best 
reported in conjunction with a full discussion of the definiteness with which individual 
ligand-field parameters can be fixed using experimental data (seldom better than 
& 10%). Furthermore, it is not unusual to find correlations between some members of 
the parameter set; these need to be identified and reported, and taken into account in 
the course of the interpretation of the parametrization that is achieved by the criterion 
of 'best-fit' to the experimental data. This has been standard practice in the recent 
literature of Ligand-Field Analysis (Gerloch 1984, Gerloch and Woolley 1984, Deeth 
and Gerloch 1984 a, b, 1985 a, b). It is hoped that the introduction to the theoretical 
basis and chemical applications of the Cellular Ligand-Field model given here will 
convey something of the flavour of the approach and its scope. Ligand-field theory in 
chemistry is alive and well! 

5. Postlude: The electronic structure of materials 
One of the principal ideas emphasized in this review is the need to go beyond a 

purely molecular theory and recognize ligand-field theory as a quantum mechanical 
model of a paramagnetic insulator. In the final analysis we cannot escape the truism 
that our experiments are performed on crystals (or macroscopic samples) rather than 
individual molecules; moreover the claim of modern quantum theory is that it is 
capable (in the form of a quantum field theory) of describing directly the electronic 
structure of materials. This final section is a short introduction to the qualitative ideas 
that have proved useful in this area of condensed-matter physics. It is hoped that it will 
provide a useful background to the main review. 

One of the early successes of quantum theory was the Bloch-Wilson explanation of 
the fundamental distinction between metals and insulators (Mott 1974). The electronic 
structure of crystalline materials with idealized periodic lattices can be understood in 
terms of the wave properties of the electron. According to classical wave theory, 
standing waves in a periodic lattice are only possible for certain values of the 
wavevector k, and so the electronic structure of such a solid should consist of bands of 
allowed energy levels separated by gaps where electron energy levels are forbidden. If 
the allowed energy bands are incompletely filled there should result a good electrical 
conductor, i.e. a metal, whereas if the electrons fill all the levels up to a forbidden energy 
range, the result is an insulator. Even though this picture of the electronic structure of 
the solid state is only partially valid, this account of the distinction between metals and 
insulators is one that is still widely taught. 
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L F  analysis of transition-metal complexes 135 

Two examples demonstrate its weakness: copper sulphate pentahydrate is an 
exemplar of the ligand-field regime that we discussed in section 2.2.; as noted there, it 
has an incompletely filled valence d-band and yet is a good insulator. Even worse for 
the Bloch-Wilson viewpoint is the recognition that there should be no restrictions on 
the wavevectors of electron waves in amorphous materials which apparently ought to be 
metallic irrespective of their chemical constitution. The loss of long-range crystal order 
seems to be sufficient to remove the restrictions on the permissible wavevectors. 
Amorphous insulators are of course extremely common-a canonical example is 
ordinary window glass whose colourless transparency also points to an energy gap in 
excess of N 3 eV, above its Fermi energy. From a traditional chemical point of view the 
resolution of the paradox is obvious. A silicate glass, although disordered, has a local 
structure of 2-electron covalent Si-0 bonds which account for the valence electrons; 
from an ‘old-fashioned’ chemist’s point of view the electrons should indeed be localized 
in the bonds so that saturated chemical bonds should imply an absence of free charge 
carriers. From this perspective the lack of crystalline order is irrelevant as far as the lack 
of electron mobility is concerned. It is only relatively recently that this heuristic 
chemical argument has been satisfactorily reconciled with electronic structure theory 
through the concept of electron localization (Mott 1974, Mott and Davis 1979, Elliott 
1983, Kaveh and Mott 1985). 

5.1. Localization 
One of the key concepts in the quantum mechanical theory of materials is the idea of 

localization. Let ( r )  be the distance an electron moves, on average, from some atomic 
centre,? and let L measure the overall (linear) dimension of the electronic system. For 
small molecules, the domain of computational quantum chemistry, we have a limiting 
case where the relationship 

( r )  z L small molecules 

is generally valid. In ‘large’ systems (macroscopic matter) we can have either 

( r )  % L delocalized electrons 
*Metals 

or 

( r )  << L localized electrons 
*Insulators 

depending on dynamical factors (the interactions) determined by the chemical 
composition of the material concerned, i.e. the atomic numbers (Zi} of the constituent 
nuclei and overall electroneutrality. 

It may be helpful to digress for a moment to give some reassurance about the use of 
SCF one-electron models; almost any model of electronic structure that calculates 
accurately the effects of the local atomic environment of each atom in a molecule or solid, 
i.e. the coordination shell of the atom, can give a reasonable account of the energetics of 
the ground electronic state, because the energy is dominated by short-range interactions. 
So band theory or the SCF-MO model may still be useful even if (r)<tL; however, such 
calculations may be quite useless (qualitatively wrong) for properties other than the 

t For example, for a localized orbital x NN N exp (- r / l ) ,  we find ( r x )  = O(A). 
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136 R. G. Woolley 

energy, e.g. magnetism, conductivity, or spectroscopy. Thus, although the SCF- 
Hartree-Fock model has great difficulty with transition-metal complexes because of 
the d-electron correlations (Liithi et al. 1984), density functional models have proved 
rather more successful (Jorg and Rosch 1985 and cited references). 

5.2. Coupling constants and the canonical types of electronic structure 
Modern electronic structure theory in condensed-matter physics gives us the 

following picture. There are three main types of interaction which we have to consider; 
we associate a characteristic energy or coupling constant with each. The three factors 
affect each other, and the actual electronic structure and associated crystal structure 
must in principle be determined self-consistently-a characteristic feature of a quantum 
field theory containing attractive interactions as well as repulsive forces. These three 
factors are: 

(a) the one-electron energy, T-the concern of band theory and the SCF-MO 
model, 

(b) the interelectron repulsion energy, U-responsible for electron correlation, 
(c) the vibronic interaction energy, V-the coupling between electrons and nuclei. 

I will describe each of them briefly. 

(a) The one-electron energy, T 

electron in the presence of all the atoms in the system, 
The one-electron hamiltonian, &, describes the self-consistent behaviour of an 

In the absence of other interactions, the (en}  describe the electron energy levels and the 
band-orbitals (a} are delocalized, ( r , )  EL. Electrons are delocalized by T unless 
other forces operate to confine them. The efficacy of Tis largely determined by the 
magnitude of the resonance integrals connecting orbitals on different atoms in 
comparison with other energies in the system. Chemists have much experience in 
estimating such quantities. 

(b)  The interelectron repulsion energy, U 
For localized orbitals (X,(rx)<<L},  this energy can be thought of as a classical 

Coulomb interaction between charge distributions, including a self-interaction term 
(McWeeny and Sutcliffe 1976), 

but for materials, unlike small molecules, it is essential to write 

1 
912 =- 

E112 

where the effective dielectric constant, E, must be determined self-consistently for any 
given system from some suitable many-body theory. The dielectric constant of a metal 
is large, corresponding to effective screening between the electrons (small U),  whereas 
the dielectric constant for the electrons in an insulator is small, indicating poor 
screening and marked electron correlation. At a metal-insulator transition there is a 
discontinuous change in dielectric constant. 
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L F  analysis qf transition-metal complexes 137 

U favours high-spin arrangements, or ordered magnetic structures (cf. Hund’s rules). 
U acts against T as far as delocalization is concerned because the loss of electron 
mobility throughout the material may be more than compensated for by confining the 
electrons to localized orbitals so as to keep them out of each other’s way (Mott 1949). 

(c) The vibronic interaction energy, V 
This is the coupling energy between electrons and atomic vibrations. In adiabatic 

(Born-Oppenheimer) molecular theory it is discussed in terms of the effect of the 
‘pseudo-Jahn-Teller’ interactions on the magnitude of the HOMO-LUMO energy 
gap. In ‘large’ systems the magnitude of Vdepends critically on the localization of the 
electrons concerned (Anderson 1972. 1975): 

for ( r )  =I,, 

for ( r )  << L, 

V g  typical vibrational quantum (phonon) 

V S  typical electronic excitation energy 
energy, ha, = 10’ cm- 

Eel=a few eV. (O(lO4cm-l)). 

The important feature of Vis that it is more nearly diagonal in a localized orbital 
basis, like U but unlike T.  For localized orbitals ( X } ,  V favours the pairing of electrons 
with antiparallel spins. It is involved in 

(a) covalency (Lewis electron pairskbonding energy ME,, 
(b) superconductivity in metals (Cooper pairs)-pair binding energy typically 

O( 10 cm- ’) < ha,. 

The signature of both (a) and (b) is their diamagnetism. Superconducting metals can be 
recognized as frustrated covalent insulators; the weak binding energy of Cooper pairs 
due to Yis associated with an average separation of paired electrons of O(103,&), 
Cooper pairs form a boson gas; when the interaction between the electrons is greatly 
enhanced (remember V is attractive and in this case overcomes U )  the ‘gas’ ‘condenses’ 
into an ordered electron pair structure that we recognize as a system of covalent bonds 
in an insulating material (Anderson 1974). 

This must now be drawn together. There are three major limiting cases realized in 
practice, and these give rise to three main types of bonding: 

(i) T > U ,  V ‘Metals’ 
(ii) U >  T ‘Paramagnetic insulators’ 

(iii) V> T ,  U ‘Diamagnetic insulators’ 

The variation in bonding associated with these three coupling constants can be 
conveniently represented on a triangular (Roozeboom) plot, familiar in chemical 
thermodynamics from studies of ternary phase equilibria. Figure 6 shows such a plot 
with some representative materials marked. 

This review has been concerned with materials located in figure 6 in the region 
where U is the important energy; the simple metals of Groups I to IV are located near 
the T vertex, while solid inert gases, the classical ionic solids (e.g. the alkali halides) and 
covalent networks are located near the Vvertex. These examples illustrate the three 
main types of chemical bonding which are separated by phase boundaries. Crossing a 
boundary means a change in bond type and leads to: 

(i) a large-scale reorganization of the electronic structure which is reflected in a 
drastic change in ( r ) ,  and 
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PHASE DIAGRAM FOR BOND TYPES 

T 

high superconducting m 
from Groups 
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transition metal chalcogenldes 
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Figure 6. A Roozeboom plot showing the three canonical types of electronic structure separated by phase boundaries (see text for 
discussion of the diagram). 
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LF analysis of transition-metal complexes 139 

(ii) discontinuities or alterations in the thermodynamic state variables and 
transport coefficients (e.g. heat capacity, conductivityboften a genuine phase 
transition (Gutlich 198 1, Edwards and Sienko 1982). 

Transitions across these boundaries are rather uncommon; almost all materials belong 
to one of the three canonical types of bonding, and no realistic experimental variation 
in pressure and/or temperature (and in mixed systems, mole fractions of components) 
can enforce a transition (Anderson 1974). 

The reader will notice that there are two canonical types of insulator and hence two 
distinct types of metal-insulator transition. In some sense therefore it would seem that 
there are two classes of metals, although these are not obviously differentiated in the 
figure. This is indeed so. As we move away from the Tvertex, the one-electron energy 
decreases while U and/or Vare increasing. This means that we move either towards 
metals in which electrons are strongly interacting (U becoming dominant) or towards 
metals with enhanced vibronic interactions (V becoming important). Near the two 
boundaries that terminate metallic behaviour we do indeed find two distinct categories 
of metals: 

(i) near the paramagnetic insulatorometal  boundary we find metals characterized 
by strong interelectron repulsion interactions and pronounced magnetism- 
either the enhanced paramagnetism of ‘nearly magnetic metals’ such as 
platinum, or metals such as chromium and iron that exhibit magnetic ordering. 

(ii) near the diamagnetic insulatorsmetal  boundary interactions with the nuclei 
are important, and this is where we find the phenomenon of superconductivity. 

Empirically it appears that magnetic ordering and superconductivity cannot be 
realized in the same material (Ashcroft and Mermin 1976) and this is reflected in figure 6 
by the fact that superconducting and magnetically ordered materials are found in 
disjoint regions of the triangular plot. 

Transitions across the diamagnetic insulatoroparamagnetic insulator boundary 
are also of interest; an important class of materials associated with this boundary ’are 
transition metal complexes that undergo ‘spin-crossover’ transitions. A variety of iron 
(11) complexes that undergo structural phase transitions accompanied by changes of 
spin-state are now known (Gutlich 198 1); these are reversible phase transitions induced 
by temperature variation. 

One final point which must be emphasized is that figure 6 is schematic; the areas of 
the three regions must not be taken literally and it is speculative as to whether the 
‘triple-point’ at the centre of the diagram is of physical significance. Nevertheless, the 
figure does offer a new and powerful classification of chemical bonding in materials that 
is not tied to the Periodic Table, and it affords a much more discriminating description 
than the conventional division between ‘covalent’, ‘ionic’ and ‘metallic’ bond types. 
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